Previous |  Up |  Next

Article

Title: Symmetric and reversible properties of bi-amalgamated rings (English)
Author: Aruldoss, Antonysamy
Author: Selvaraj, Chelliah
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 17-27
Summary lang: English
.
Category: math
.
Summary: Let $f \colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $K$ and $K'$ be two ideals of $B$ and $C$, respectively, such that $f^{-1}(K) = g^{-1}(K')$. We investigate unipotent, symmetric and reversible properties of the bi-amalgamation ring $A\bowtie ^{f,g}(K, K')$ of $A$ with $(B, C)$ along $(K, K')$ with respect to $(f, g)$. (English)
Keyword: amalgamated ring
Keyword: unipotent
Keyword: symmetric ring
Keyword: reversible ring
MSC: 16N40
MSC: 16S99
MSC: 16U40
idZBL: Zbl 07893365
idMR: MR4717820
DOI: 10.21136/CMJ.2024.0449-21
.
Date available: 2024-03-13T10:02:19Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152266
.
Reference: [1] Călugăreanu, G.: UU rings.Carpathian J. Math. 31 (2015), 157-163. Zbl 1349.16059, MR 3408811
Reference: [2] Chun, Y., Jeon, Y. C., Kang, S., Lee, K. N., Lee, Y.: A concept unifying the Armendariz and $NI$ conditions.Bull. Korean Math. Soc. 48 (2011), 115-127. Zbl 1214.16021, MR 2778501, 10.4134/BKMS.2011.48.1.115
Reference: [3] Cohn, P. M.: Reversible rings.Bull. Lond. Math. Soc. 31 (1999), 641-648. Zbl 1021.16019, MR 1711020, 10.1112/S0024609399006116
Reference: [4] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal.Commutative Algebra and its Applications Walter De Gruyter, Berlin (2009), 155-172. Zbl 1177.13043, MR 2606283, 10.1515/9783110213188.155
Reference: [5] Farshad, N., Safarisabet, S. A., Moussavi, A.: Amalgamated rings with clean-type properties.Hacet. J. Math. Stat. 50 (2021), 1358-1370. Zbl 1499.16067, MR 4331405, 10.15672/hujms.676342
Reference: [6] Goodearl, K. R.: Von Neumann Regular Rings.Monographs and Studies in Mathematics 4. Pitman, London (1979). Zbl 0411.16007, MR 0533669
Reference: [7] Kabbaj, S., Louartiti, K., Tamekkante, M.: Bi-amalgamated algebras along ideals.J. Commut. Algebra 9 (2017), 65-87. Zbl 1390.13008, MR 3631827, 10.1216/JCA-2017-9-1-65
Reference: [8] Kafkas, G., Ungor, B., Halicioglu, S., Harmanci, A.: Generalized symmetric rings.Algebra Discrete Math. 12 (2011), 72-84. Zbl 1259.16042, MR 2952903
Reference: [9] Kose, H., Ungor, B., Kurtulmaz, Y., Harmanci, A.: A perspective on amalgamated rings via symmetricity.Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 237-247. Zbl 1429.16031, MR 3938153, 10.1090/conm/727
Reference: [10] Lambek, J.: On the representation of modules by sheaves of factor modules.Can. Math. Bull. 14 (1971), 359-368. Zbl 0217.34005, MR 0313324, 10.4153/CMB-1971-065-1
Reference: [11] Marks, G.: Reversible and symmetric rings.J. Pure Appl. Algebra 174 (2002), 311-318. Zbl 1046.16015, MR 1929410, 10.1016/S0022-4049(02)00070-1
Reference: [12] Ouyang, L., Chen, H.: On weak symmetric rings.Commun. Algebra 38 (2010), 697-713. Zbl 1197.16033, MR 2598907, 10.1080/00927870902828702
Reference: [13] Zhao, L., Yang, G.: On weakly reversible rings.Acta Math. Univ. Comen., New Ser. 76 (2007), 189-192. Zbl 1156.16026, MR 2385031
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo