Title: | Some properties of generalized distance eigenvalues of graphs (English) |
Author: | Ma, Yuzheng |
Author: | Shao, Yanling |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 1 |
Year: | 2024 |
Pages: | 1-15 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $G$ be a simple connected graph with vertex set $V(G)=\{v_1,v_2,\dots ,v_n \}$ and edge set $E(G)$, and let $d_{v_{i}}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\leq \alpha \leq 1$. Let $\lambda _1(D_{\alpha }(G))\geq \lambda _2(D_{\alpha }(G)) \geq \ldots \geq \lambda _n(D_{\alpha }(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\leq k\leq n$. We denote by $S_{k}(D_{\alpha }(G))=\lambda _{1}(D_{\alpha }(G)) +\lambda _{2}(D_{\alpha }(G))+\ldots +\lambda _{k}(D_{\alpha }(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_{\alpha }S(G)=\lambda _{1}(D_{\alpha }(G))-\lambda _{n}(D_{\alpha }(G))$. We obtain some bounds on $S_k((D_{\alpha }(G)))$ and $D_{\alpha }S(G)$ of graph $G$, respectively. (English) |
Keyword: | graph |
Keyword: | generalized distance matrix |
Keyword: | generalized distance eigenvalue |
Keyword: | generalized distance spread |
MSC: | 05C12 |
MSC: | 05C50 |
MSC: | 15A18 |
idZBL: | Zbl 07893364 |
idMR: | MR4717819 |
DOI: | 10.21136/CMJ.2023.0136-21 |
. | |
Date available: | 2024-03-13T10:01:43Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152263 |
. | |
Reference: | [1] Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers.J. Comb. Theory, Ser. A 29 (1980), 354-360. Zbl 0455.05045, MR 0600598, 10.1016/0097-3165(80)90030-8 |
Reference: | [2] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph.Linear Algebra Appl. 439 (2013), 21-33. Zbl 1282.05086, MR 3045220, 10.1016/j.laa.2013.02.030 |
Reference: | [3] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey.Linear Algebra Appl. 458 (2014), 301-386. Zbl 1295.05093, MR 3231823, 10.1016/j.laa.2014.06.010 |
Reference: | [4] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext. Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6 |
Reference: | [5] Buckley, F., Harary, F.: Distance in Graphs.Addison-Wesley, Redwood (1990). Zbl 0688.05017, MR 1045632 |
Reference: | [6] Cui, S.-Y., He, J.-X., Tian, G.-X.: The generalized distance matrix.Linear Algebra Appl. 563 (2019), 1-23. Zbl 1403.05083, MR 3872977, 10.1016/j.laa.2018.10.014 |
Reference: | [7] Cui, S.-Y., Tian, G.-X., Zheng, L.: On the generalized distance spectral radius of graphs.Available at https://arxiv.org/abs/1901.07695 (2019), 13 pages. 10.48550/arXiv.1901.07695 |
Reference: | [8] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 432 (2010), 2214-2221. Zbl 1218.05094, MR 2599854, 10.1016/j.laa.2009.03.038 |
Reference: | [9] Johnson, C. R., Kumar, R., Wolkowicz, H.: Lower bounds for the spread of a matrix.Linear Algebra Appl. 71 (1985), 161-173. Zbl 0578.15013, MR 0813042, 10.1016/0024-3795(85)90244-7 |
Reference: | [10] Li, X., Mohapatra, E. N., Rodriguez, R. S.: Grüss-type inequalities.J. Math. Anal. Appl. 267 (2002), 434-443. Zbl 1007.26016, MR 1888014, 10.1006/jmaa.2001.7565 |
Reference: | [11] Lin, H.: On the sum of $k$ largest distance eigenvalues of graphs.Discrete Appl. Math. 259 (2019), 153-159. Zbl 1407.05151, MR 3944596, 10.1016/j.dam.2018.12.031 |
Reference: | [12] Merikoski, J. K., Kumar, R.: Characterizations and lower bounds for the spread of a normal matrix.Linear Algebra Appl. 364 (2003), 13-31. Zbl 1021.15015, MR 1971085, 10.1016/S0024-3795(02)00534-7 |
Reference: | [13] Mirsky, L.: The spread of a matrix.Mathematica, Lond. 3 (1956), 127-130. Zbl 0073.00903, MR 0081875, 10.1112/S0025579300001790 |
Reference: | [14] Pachpatte, B. G.: Analytic Inequalities: Recent Advances.Atlantis Studies in Mathematics 3. Atlantis Press, Paris (2012). Zbl 1238.26003, MR 3025304, 10.2991/978-94-91216-44-2 |
Reference: | [15] Parlett, B. N.: The Symmetric Eigenvalue Problem.Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). Zbl 0885.65039, MR 1490034, 10.1137/1.9781611971163 |
Reference: | [16] Pirzada, S., Ganie, H. A., Alhevaz, A., Baghipur, M.: On spectral spread of generalized distance matrix of a graph.Linear Multilinear Algebra 70 (2022), 2819-2835. Zbl 1498.05173, MR 4491639, 10.1080/03081087.2020.1814194 |
Reference: | [17] Pirzada, S., Ganie, H. A., Rather, B. A., Shaban, R. Ul: On generalized distance energy of graphs.Linear Algebra Appl. 603 (2020), 1-19. Zbl 1484.05137, MR 4107088, 10.1016/j.laa.2020.05.022 |
Reference: | [18] Wiener, H.: Structural determination of paraffin boiling points.J. Am. Chem. Soc. 69 (1947), 17-20. 10.1021/ja01193a005 |
Reference: | [19] You, L., Ren, L., Yu, G.: Distance and distance signless Laplacian spread of connected graphs.Discrete Appl. Math. 223 (2017), 140-147. Zbl 1465.05109, MR 3627307, 10.1016/j.dam.2016.12.030 |
Reference: | [20] Yu, G., Zhang, H., Lin, H., Wu, Y., Shu, J.: Distance spectral spread of a graph.Discrete Appl. Math. 160 (2012), 2474-2478. Zbl 1251.05100, MR 2957956, 10.1016/j.dam.2012.05.015 |
. |
Fulltext not available (moving wall 24 months)