Title: | On the stability analysis of Darboux problem on both bounded and unbounded domains (English) |
Author: | Çelik, Canan |
Author: | Develi, Faruk |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 69 |
Issue: | 1 |
Year: | 2024 |
Pages: | 139-150 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results. (English) |
Keyword: | Darboux problem |
Keyword: | partial differential equation |
Keyword: | Ulam-Hyers stability |
Keyword: | Ulam-Hyers-Rassias stability |
Keyword: | Wendorff lemma |
MSC: | 34A12 |
MSC: | 35L70 |
MSC: | 47H10 |
idZBL: | Zbl 07830502 |
idMR: | MR4709337 |
DOI: | 10.21136/AM.2023.0200-22 |
. | |
Date available: | 2024-02-26T10:57:57Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152256 |
. | |
Reference: | [1] Bainov, D., Simeonov, P.: Integral Inequalities and Applications.Mathematics and Its Applications. East European Series 57. Kluwer Academic Publishers, Dordrecht (1992). Zbl 0759.26012, MR 1171448, 10.1007/978-94-015-8034-2 |
Reference: | [2] Brzdęk, J., Popa, D., Raşa, I.: Hyers-Ulam stability with respect to gauges.J. Math. Anal. Appl. 453 (2017), 620-628. Zbl 1404.34016, MR 3641794, 10.1016/j.jmaa.2017.04.022 |
Reference: | [3] Brzdęk, J., Popa, D., (eds.), T. M. Rassias: Ulam Type Stability.Springer, Cham (2019). Zbl 1431.39001, MR 3971238, 10.1007/978-3-030-28972-0 |
Reference: | [4] Çelik, C., Develi, F.: Existence and Hyers-Ulam stability of solutions for a delayed hyperbolic partial differential equation.Period. Math. Hung. 84 (2022), 211-220. Zbl 07551294, MR 4423476, 10.1007/s10998-021-00400-2 |
Reference: | [5] Dezső, G.: The Darboux-Ionescu problem for a third order system of hyperbolic equations.Libertas Math. 21 (2001), 27-33. Zbl 0994.35080, MR 1867764 |
Reference: | [6] Huang, J., Li, Y.: Hyers-Ulam stability of delay differential equations of first order.Math. Nachr. 289 (2016), 60-66. Zbl 1339.34082, MR 3449100, 10.1002/mana.201400298 |
Reference: | [7] Jonesco, D. V.: Sur une classe d'équations fonctionnelles.Annales Toulouse (3) 19 (1927), 39-92 French \99999JFM99999 53.0477.03. MR 1508394, 10.5802/afst.343 |
Reference: | [8] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order.Appl. Math. Lett. 17 (2004), 1135-1140. Zbl 1061.34039, MR 2091847, 10.1016/j.aml.2003.11.004 |
Reference: | [9] Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation.Fixed Point Theory Appl. 2007 (2007), Article ID 57064, 9 pages. Zbl 1155.45005, MR 2318689, 10.1155/2007/57064 |
Reference: | [10] Jung, S.-M.: Hyers-Ulam stability of linear partial differential equations of first order.Appl. Math. Lett. 22 (2009), 70-74. Zbl 1163.39308, MR 2484284, 10.1016/j.aml.2008.02.006 |
Reference: | [11] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis.Springer Optimization and Its Applications 48. Springer, New York (2011). Zbl 1221.39038, MR 2790773, 10.1007/978-1-4419-9637-4 |
Reference: | [12] Kwapisz, M., Turo, J.: On the existence and uniqueness of solutions of Darboux problem for partial differential-functional equations.Colloq. Math. 29 (1974), 279-302. Zbl 0284.35036, MR 0364918, 10.4064/cm-29-2-279-302 |
Reference: | [13] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Stability Analysis of Nonlinear Systems.Pure and Applied Mathematics 125. Marcel Dekker, New York (1989). Zbl 0676.34003, MR 0984861, 10.1007/978-3-319-27200-9 |
Reference: | [14] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation.J. Math. Anal. Appl. 385 (2012), 86-91. Zbl 1236.39030, MR 2832076, 10.1016/j.jmaa.2011.06.025 |
Reference: | [15] Lungu, N., Popa, D.: Hyers-Ulam stability of some partial differential equation.Carpatian J. Math. 30 (2014), 327-334. Zbl 1349.35035, MR 3362855, 10.37193/CJM.2014.03.11 |
Reference: | [16] Lungu, N., Rus, I. A.: Ulam stability of nonlinear hyperbolic partial differential equations.Carpatian J. Math. 24 (2008), 403-408. Zbl 1249.35219 |
Reference: | [17] Marian, D., Ciplea, S. A., Lungu, N.: Ulam-Hyers stability of Darboux-Ionescu problem.Carpatian J. Math. 37 (2021), 211-216. Zbl 07445719, MR 4264071, 10.37193/CJM.2021.02.07 |
Reference: | [18] Otrocol, D., llea, V.: Ulam stability for a delay differential equation.Cent. Eur. J. Math. 11 (2013), 1296-1303. Zbl 1275.34098, MR 3047057, 10.2478/s11533-013-0233-9 |
Reference: | [19] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation.J. Math. Anal. Appl. 381 (2011), 530-537. Zbl 1222.34069, MR 2802090, 10.1016/j.jmaa.2011.02.051 |
Reference: | [20] Popa, D., Raşa, I.: Hyers-Ulam stability of the linear differential operator with nonconstant coefficients.Appl. Math. Comput. 219 (2012), 1562-1568. Zbl 1368.34075, MR 2983863, 10.1016/j.amc.2012.07.056 |
Reference: | [21] Rus, I. A.: On a problem of Darboux-Ionescu.Stud. Univ. Babeş-Bolyai Math. 26 (1981), 43-45. Zbl 0534.35018, MR 0653967 |
Reference: | [22] Rus, I. A.: Picard operators and applications.Sci. Math. Jpn. 58 (2003), 191-219. Zbl 1031.47035, MR 1987831 |
Reference: | [23] Rus, I. A.: Fixed points, upper and lower fixed points: Abstract Gronwall lemmas.Carpathian J. Math. 20 (2004), 125-134. Zbl 1113.54304, MR 2138535 |
Reference: | [24] Rus, I. A.: Ulam stability of ordinary differential equations.Stud. Univ. Babeş-Bolyai Math. 54 (2009), 125-133. Zbl 1224.34165, MR 2602351 |
Reference: | [25] Teodoru, G.: The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order.Fixed Point Theory 7 (2006), 127-146. Zbl 1113.35116, MR 2242321 |
Reference: | [26] Zada, A., Ali, W., Park, C.: Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type.Appl. Math. Comput. 350 (2019), 60-65. Zbl 1428.34087, MR 3899985, 10.1016/j.amc.2019.01.014 |
. |
Fulltext not available (moving wall 24 months)