Previous |  Up |  Next

Article

Title: Relaxation-time limits of global solutions in full quantum hydrodynamic model for semiconductors (English)
Author: Ra, Sungjin
Author: Hong, Hakho
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 1
Year: 2024
Pages: 113-137
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the global well-posedness and relaxation-time limits for the solutions in the full quantum hydrodynamic model, which can be used to analyze the thermal and quantum influences on the transport of carriers in semiconductor devices. For the Cauchy problem in $\mathbb {R}^3$, we prove the global existence, uniqueness and exponential decay estimate of smooth solutions, when the initial data are small perturbations of an equilibrium state. Moreover, we show that the solutions converge into that of the simplified quantum energy-transport model and the quantum drift-diffusion model for the moment relaxation limit, and the moment and energy relaxation limit, respectively. (English)
Keyword: quantum hydrodynamic equation
Keyword: quantum Euler-Poisson system
Keyword: bipolar semiconductor model
Keyword: relaxation-time limit
MSC: 35B40
MSC: 35Q40
MSC: 76Y05
MSC: 82D37
idZBL: Zbl 07830501
idMR: MR4709336
DOI: 10.21136/AM.2023.0039-23
.
Date available: 2024-02-26T10:57:13Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152255
.
Reference: [1] Chen, X.: The isentropic quantum drift-diffusion model in two or three dimensions.Z. Angew. Math. Phys. 60 (2009), 416-437. Zbl 1173.35518, MR 2505412, 10.1007/s00033-008-7068-4
Reference: [2] Chen, X., Chen, L.: Initial time layer problem for quantum drift-diffusion model.J. Math. Anal. Appl. 343 (2008), 64-80. Zbl 1139.35010, MR 2409458, 10.1016/j.jmaa.2008.01.015
Reference: [3] Chen, X., Chen, L., Jian, H.: Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model.Nonlinear Anal., Real World Appl. 10 (2009), 1321-1342. Zbl 1171.35329, MR 2502947, 10.1016/j.nonrwa.2008.01.008
Reference: [4] Chen, L., Ju, Q.: Existence of weak solution and semiclassical limit for quantum drift-diffusion model.Z. Angew. Math. Phys. 58 (2007), 1-15. Zbl 1107.35037, MR 2293100, 10.1007/s00033-005-0051-4
Reference: [5] Dong, J.: Mixed boundary-value problems for quantum hydrodynamic models with semiconductors in thermal equilibrium.Electron. J. Differ. Equ. 2005 (2005), Article ID 123, 8 pages. Zbl 1245.35029, MR 2181267
Reference: [6] Gardner, C. L.: The quantum hydrodynamic model for semiconductor devices.SIAM J. Appl. Math. 54 (1994), 409-427. Zbl 0815.35111, MR 1265234, 10.1137/S003613999224042
Reference: [7] Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation.Arch. Ration. Mech. Anal. 194 (2009), 133-220. Zbl 1223.35264, MR 2533926, 10.1007/s00205-008-0186-5
Reference: [8] Gualdani, M. P., Jüngel, A., Toscani, G.: A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions.SIAM. J. Math. Anal. 37 (2006), 1761-1779. Zbl 1102.35045, MR 2213393, 10.1137/S0036141004444615
Reference: [9] Huang, F., Li, H.-L., Matsumura, A.: Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors.J. Differ. Equations 225 (2006), 1-25. Zbl 1160.76444, MR 2228690, 10.1016/j.jde.2006.02.002
Reference: [10] Jia, Y., Li, H.: Large-time behavior of solutions of quantum hydrodynamic model for semiconductors.Acta Math. Sci., Ser. B, Engl. Ed. 26 (2006), 163-178. Zbl 1152.76505, MR 2206278, 10.1016/S0252-9602(06)60038-6
Reference: [11] Jüngel, A.: A steady-state quantum Euler-Poisson system for potential flows.Commun. Math. Phys. 194 (1998), 463-479. Zbl 0916.76099, MR 1627673, 10.1007/s002200050364
Reference: [12] Jüngel, A., Li, H.: Quantum Euler-Poisson systems: Existence of stationary states.Arch. Math., Brno 40 (2004), 435-456. Zbl 1122.35140, MR 2129964
Reference: [13] Jüngel, A., Li, H.: Quantum Euler-Poisson systems: Global existence and exponential decay.Q. Appl. Math. 62 (2004), 569-600. Zbl 1069.35012, MR 2086047, 10.1090/qam/2086047
Reference: [14] Jüngel, A., Li, H.-L., Matsumura, A.: The relaxation-time limit in the quantum hydrodynamic equations for semiconductors.J. Differ. Equations 225 (2006), 440-464. Zbl 1147.82364, MR 2225796, 10.1016/j.jde.2005.11.007
Reference: [15] Jüngel, A., Matthes, D., Milišić, J. P.: Derivation of new quantum hydrodynamic equations using entropy minimization.SIAM J. Appl. Math. 67 (2006), 46-68. Zbl 1121.35117, MR 2272614, 10.1137/050644823
Reference: [16] Jüngel, A., Milišić, J. P.: A simplified quantum energy-transport model for semiconductors.Nonlinear Anal., Real World Appl. 12 (2011), 1033-1046. Zbl 1206.35152, MR 2736191, 10.1016/j.nonrwa.2010.08.026
Reference: [17] Jüngel, A., Pinnau, R.: A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system.SIAM J. Numer. Anal. 39 (2001), 385-406. Zbl 0994.35047, MR 1860272, 10.1137/S0036142900369362
Reference: [18] Jüngel, A., Violet, I.: The quasineutral limit in the quantum drift-diffusion equations.Asymptotic Anal. 53 (2007), 139-157. Zbl 1156.35077, MR 2349559
Reference: [19] Kim, Y.-H., Ra, S., Kim, S.-C.: Asymptotic behavior of strong solutions of a simplified energy-transport model with general conductivity.Nonlinear Anal., Real World Appl. 59 (2021), Article ID 103261, 18 pages. Zbl 1468.35202, MR 4177987, 10.1016/j.nonrwa.2020.103261
Reference: [20] Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids.Commun. Pure Appl. Math. 34 (1981), 481-524. Zbl 0476.76068, MR 0615627, 10.1002/cpa.3160340405
Reference: [21] Li, H., Marcati, P.: Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors.Commun. Math. Phys. 245 (2004), 215-247. Zbl 1075.82019, MR 2039696, 10.1007/s00220-003-1001-7
Reference: [22] Li, H., Zhang, G., Zhang, M., Hao, C.: Long-time self-similar asymptotic of the macroscopic quantum models.J. Math. Phys. 49 (2008), Article ID 073503, 14 pages. Zbl 1152.81528, MR 2432041, 10.1063/1.2949082
Reference: [23] Mao, J., Zhou, F., Li, Y.: Some limit analysis in a one-dimensional stationary quantum hydrodynamic model for semiconductors.J. Math. Anal. Appl. 364 (2010), 186-194. Zbl 1186.35165, MR 2576062, 10.1016/j.jmaa.2009.11.039
Reference: [24] Markowich, P. A., Ringhofer, C. A., Schmeiser, C.: Semiconductor Equations.Springer, Vienna (1990). Zbl 0765.35001, MR 1063852, 10.1007/978-3-7091-6961-2
Reference: [25] Nirenberg, L.: On elliptic partial differential equations.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. Zbl 0088.07601, MR 0109940
Reference: [26] Nishibata, S., Shigeta, N., Suzuki, M.: Asymptotic behaviors and classical limits of solutions to a quantum drift-diffusion model for semiconductors.Math. Models Methods Appl. Sci. 20 (2010), 909-936. Zbl 1193.82057, MR 2659742, 10.1142/S0218202510004477
Reference: [27] Nishibata, S., Suzuki, M.: Initial boundary value problems for a quantum hydrodynamic model of semiconductors: Asymptotic behaviors and classical limits.J. Differ. Equations 244 (2008), 836-874. Zbl 1139.82042, MR 2391346, 10.1016/j.jde.2007.10.035
Reference: [28] Ra, S., Hong, H.: The existence, uniqueness and exponential decay of global solutions in the full quantum hydrodynamic equations for semiconductors.Z. Angew. Math. Phys. 72 (2021), Article ID 107, 32 pages. Zbl 1467.76078, MR 4252285, 10.1007/s00033-021-01540-8
Reference: [29] Ri, J., Ra, S.: Solution to a multi-dimensional isentropic quantum drift-diffusion model for bipolar semiconductors.Electron. J. Differ. Equ. 2018 (2018), Article ID 200, 19 pages. Zbl 07004591, MR 3907819
Reference: [30] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl. (4) 146 (1986), Article ID 146, 32 pages. MR 0916688, 10.1007/BF01762360
Reference: [31] Zhang, G., Li, H.-L., Zhang, K.: Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors.J. Differ. Equations 245 (2008), 1433-1453. Zbl 1154.35071, MR 2436449, 10.1016/j.jde.2008.06.019
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo