[5] Dong, J.:
Mixed boundary-value problems for quantum hydrodynamic models with semiconductors in thermal equilibrium. Electron. J. Differ. Equ. 2005 (2005), Article ID 123, 8 pages.
MR 2181267 |
Zbl 1245.35029
[12] Jüngel, A., Li, H.:
Quantum Euler-Poisson systems: Existence of stationary states. Arch. Math., Brno 40 (2004), 435-456.
MR 2129964 |
Zbl 1122.35140
[18] Jüngel, A., Violet, I.:
The quasineutral limit in the quantum drift-diffusion equations. Asymptotic Anal. 53 (2007), 139-157.
MR 2349559 |
Zbl 1156.35077
[20] Klainerman, S., Majda, A.:
Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981), 481-524.
DOI 10.1002/cpa.3160340405 |
MR 0615627 |
Zbl 0476.76068
[25] Nirenberg, L.:
On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162.
MR 0109940 |
Zbl 0088.07601
[26] Nishibata, S., Shigeta, N., Suzuki, M.:
Asymptotic behaviors and classical limits of solutions to a quantum drift-diffusion model for semiconductors. Math. Models Methods Appl. Sci. 20 (2010), 909-936.
DOI 10.1142/S0218202510004477 |
MR 2659742 |
Zbl 1193.82057
[28] Ra, S., Hong, H.:
The existence, uniqueness and exponential decay of global solutions in the full quantum hydrodynamic equations for semiconductors. Z. Angew. Math. Phys. 72 (2021), Article ID 107, 32 pages.
DOI 10.1007/s00033-021-01540-8 |
MR 4252285 |
Zbl 1467.76078
[29] Ri, J., Ra, S.:
Solution to a multi-dimensional isentropic quantum drift-diffusion model for bipolar semiconductors. Electron. J. Differ. Equ. 2018 (2018), Article ID 200, 19 pages.
MR 3907819 |
Zbl 07004591