Previous |  Up |  Next

Article

Keywords:
singular equation; nonlinear parabolic equation; degenerate coercivity
Summary:
In this paper, we study the existence results for some parabolic equations with degenerate coercivity, singular lower order term depending on the gradient, and positive initial data in $L^1$.
References:
[1] Andreu, F., Léon, S. Segura de, Boccardo, L., Orsina, L.: Existence results for $L^1$ data of some quasi-linear parabolic problems with a quadratic gradient term and source. Math. Models Methods Appl. Sci. 12 (2002), 1-16. DOI 10.1142/S0218202502001520 | MR 1880893 | Zbl 1032.35099
[2] Arcoya, D., Carmona, J., Leonori, T., Martínez-Aparicio, P. J., Orsina, L., Petitta, F.: Existence and nonexistence of solutions for singular quadratic quasilinear equations. J. Differ. Equations 246 (2009), 4006-4042. DOI 10.1016/j.jde.2009.01.016 | MR 2514734 | Zbl 1173.35051
[3] Boccardo, L., Orsina, L., Porzio, M. M.: Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources. Adv. Calc. Var. 4 (2011), 397-419. DOI 10.1515/acv.2011.006 | MR 2844511 | Zbl 1232.35068
[4] Dall'Aglio, A., Orsina, L., Petitta, F.: Existence of solutions for degenerate parabolic equations with singular terms. Nonlinear Anal., Theory Methods Appl. 131 (2016), 273-288. DOI 10.1016/j.na.2015.06.030 | MR 3427981 | Zbl 1332.35188
[5] Ouardy, M. El, Hadfi, Y. El, Ifzarne, A.: Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete Contin. Dyn. Syst., Ser. S 15 (2022), 117-141. DOI 10.3934/dcdss.2021012 | MR 4361686 | Zbl 07539661
[6] Leoni, F., Pellacci, B.: Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data. J. Evol. Equ. 6 (2006), 113-144. DOI 10.1007/s00028-005-0234-7 | MR 2215635 | Zbl 1109.35052
[7] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[8] Martínez-Aparicio, P. J., Petitta, F.: Parabolic equations with nonlinear singularities. Nonlinear Anal., Theory Methods Appl. 74 (2011), 114-131. DOI 10.1016/j.na.2010.08.023 | MR 2734981 | Zbl 1203.35155
[9] Rakotoson, J. M.: A compactness lemma for quasilinear problems: Application to parabolic equations. J. Funct. Anal. 106 (1992), 358-374. DOI 10.1016/0022-1236(92)90053-L | MR 1165860 | Zbl 0801.35063
[10] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. (4) 146 (1987), 65-96. DOI 10.1007/BF01762360 | MR 0916688 | Zbl 0629.46031
[11] Souilah, R.: Existence and regularity results for some elliptic equations with degenerate coercivity and singular quadratic lower-order terms. Mediterr. J. Math. 16 (2019), Article ID 87, 21 pages. DOI 10.1007/s00009-019-1360-8 | MR 3969260 | Zbl 1418.35177
[12] Xia, L., Liu, Q., Yao, Z.: Existence of the maximal weak solution for a class of singular parabolic equations. J. Math. Anal. Appl. 387 (2012), 439-446. DOI 10.1016/j.jmaa.2011.09.011 | MR 2845763 | Zbl 1231.35105
[13] Xia, L., Yao, Z.: Existence, uniqueness and asymptotic behavior of solutions for a singular parabolic equation. J. Math. Anal. Appl. 358 (2009), 182-188. DOI 10.1016/j.jmaa.2009.04.039 | MR 2527591 | Zbl 1172.35421
[14] Zhang, C., Zhou, S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data. J. Differ. Equations 248 (2010), 1376-1400. DOI 10.1016/j.jde.2009.11.024 | MR 2593046 | Zbl 1195.35097
[15] Zhou, W., Wei, X.: Some results on a singular parabolic equation in one dimension case. Math. Methods Appl. Sci. 36 (2013), 2576-2587. DOI 10.1002/mma.2778 | MR 3144123 | Zbl 1280.35071
Partner of
EuDML logo