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Abstract. In this paper, we study the existence results for some parabolic equations with
degenerate coercivity, singular lower order term depending on the gradient, and positive
initial data in L!.
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1. INTRODUCTION

We study the existence and regularity results for the following parabolic problem:

p
Oyu + Lu + B|Vz;| =u" inQr=(0,T)xQ,
u
(P) u(0,2) =up(z) =0 in ,
u=0 onT'r =(0,T) x 99,

where T > 0, B > 0 are real numbers, uy € L*(9), Q is a bounded open subset of
RY (N > 2) with boundary denoted by 912, p is a real number such that p > 2 and L
is the operator given by

Lu = —div(A(t, 2, u)|Vu|P~?Vu).
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Here, we suppose that A: (0,7) x RY x R — R is a Carathéodory function and for
almost every (¢,2) € (0,T) x Q, for all s € R satisfies

B 5 < At z, 8) < a,

(1) CERT)

where a, (3 are strictly positive real numbers and ¢ > 0, a: (0,7) x RN — R is

a measurable nonnegative function verifying

(1.2) a(t,z) < 0,

where ¢ is a strictly positive real number. We furthermore suppose that
(1.3) 0<f<l, O<r<p-—0.

If (1.1) holds true, the differential operator L is not coercive when u is large.
Moreover, the lower order term is singular as u tends to zero. We overcome these two
difficulties by approximation of (P) by a sequence of nondegenerate and nonsingular
problems (in the case ug € L*°(Q2)), and passing to the limit in the approximate
problems we prove that (P) admits at least one solution u € LP(0,T; W,y "*(2)) N
L>(Q). In the case ug € L*(Q2) we approach ug by ug, € L>(Q) and we use the
results of the first case to achieve the passage to the limit in the approximate problems
by proving the existence of the solution u € L4(0, T Wol’q(Q)), q=p—6ON/(N+1).

For the case p = 2, p = 0 and for positive initial data, the existence of solutions
to problem (P) is proved in [3] under the operator v — —div(M (¢,2)Vv), where
M: Qr - RN ’ is a measurable bounded and uniformly elliptic matrix.

If the nonlinear right-hand term is not present, i.e., in the evolutive case, prob-

lems as
P
8tu—Apu+B|vu7Z| :f in QT = (O,T) X Q,
(P1) u(0,x) = ugp(z) in Q,
u=0 onT'y = (0,T) x 99,

under various assumptions on the summability of the source f, have been considered
in the case p =2 and § < 1 in [8]. If § = 1, the existence solution has been considered
in [12] and [13] for smooth strictly positive data, while degenerate problems were
studied in [15] in the one dimensional case and p > 2.

Let us also mention that in [4] the authors proved the existence and nonexistence of
solutions for a general class of singular homogeneous (i.e., f = 0) parabolic problems
as (P1) with p > 2.
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In [11], the author showed the existence of positive solutions of elliptic equations
with degenerate coercivity and singular quadratic lower-order terms

—div(M (z,u)Vu) + b(x) WuZ'Q ="+ f, feL').

The aim of this paper is to extend the results in [3] to the case of degenerate
parabolic equations with p > 2 and establish the existence of weak solutions of
problem (P) for nonnegative initial data ug € L*(£).

This paper is organized as follows. In Section 2, we define the weak solution and
prove the existence of weak solutions u for the first case ug € L*(2). Section 3 is
devoted to the study of (P) with an initial datum ug € L*(Q2). We give a better
regularity result compared to [9] because if 6 € (0, 1), we have

ON S N
N+1 N+1’

so Theorem 3.1 improves (see Theorem 1, [9]).

2. BOUNDED INITIAL DATA (ug € L>(2))

In this section, we prove that there exists a weak solution of problem (P) for wug
bounded. For this, we use the result in [1] and then an L*°-estimate procedure
introduced by [5]. Given a real positive number k, we define the functions

ko ifr>k,
Tp(r)=<r if|r|<k, reR.
—k ifr < =k,

Its primitive ©5: R — R™T is defined by

7“2

r 5 lf |7"| < If,
O(r) = / Te(t) dt = o
0 Krl == i |r > k.

We then use the following results:
T
(2.1) / (D0, To(v)) dt = / O (u(T)) dz — / 04 (v(0)) dx
0 Q Q
and
k2

(2.2) klr| — 5 < O(r) <klr| VreR.
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Definition 2.1. A function u is a weak solution of problem (P) if u €
LP(0,T; Wy P () N L°(Q7) such that dyu € LP (0, T; W12 (Q)) + LY (Qr), u > 0,
|Vul? /u® belongs to L'(Qr), and

Amnqﬂm—lﬁmﬂmm+/ wdypda dt

T

+ A(t, z,u)|VulP 2 VuVp dz dt
Qr

P
+B/ |Vuz;| goda:dt:/ u"pdrdt

for every ¢ € LP(0,T; WyP(Q)) N L>°(Qr) such that d;p € LP' (0, T; W1 (Q)) +
LY(Qr).

Remark 2.2. Notice that because of the fact that u € C([0,T]; L2(2)) (see [7]),
the functions ¢(7T") and ¢(0) in the above definition have sense and the meaning of

the initial condition «(0) = ug is clear.

Theorem 2.3. Let p > 2, ug € L™(Q), suppose that (1.3) holds true. Then
problem (P) has at least one weak solution u € LP(0,T;Wy?(€)) N L=(Qr) N
C([0,T); L1()).

2.1. Proof of Theorem 2.3. We approximate problem (P) by following nonsin-
gular problem:

Oy, — div(A(t, z, Ty, (un)) [ Vun [P~2Vuy,)

Un |Vu,|? :
B—m——— = Tn n T )
(P2) B Gl + iyt~ Lnllual) i Qr
n(0,) = () in 0,
Up =0 on I'r.

Note that by (1.1) we have

E . _ B
(a(t,z) + [T (un)])? - (6 4+mn)e’

so the operator B: v — div(A(t, z, T, (v))|Vo[P~2Vv) is coercive. Thus, the exis-
tence of the approximate solution is proved as in [7]. We begin by proving that

A(tv Z, Tn(un)) >

un = 0, using u,, = min(0, u,,) as a test function in (P}) and by (1.1), we have

1d [T |V, |P
2.3 —— uy )2 dt + Z dz dt
(2.3) 2dt J, () or (alt,m) + Ty (un)])e
U |V |P _ / _
+B =, dedt < Up|"u,, dxdt.
or Tl + 1m0 o
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Since ug > 0, we have
1d (T _ 1 B 1 -
5& o (Un)2 dt = 5 /Q(un (T7 ;[;))2 dr — 5 /Q(un (0,%))2 dz > 0.

The lower-order term has the same sign of the solution and dropping nonnegative
terms, we get

[V, [P
7 (a(t, @) + [T (un)])
Thus, u,, = 0 and so u, > 0. Therefore, u,, solves

Oy, — div(A(t, z, Ty, (un)) [ Vun [P~2Vu,)

U |[Vun [P

B dzdt < / |t |"uy, dzdt < 0.
Q ¢ T

(®.) B e = ) mor
un(ovx) = ’LLO(iC) in Qa
Up =0 on I'r.

Lemma 2.4. Let p > 2 and u,, be the solutions to problems (P,). Then we have
for all k > 0

k(6 + k)@
(2.4) / |V () [P dz dt < % (/ u, drdt + ||u0|L1(Q)).

Proof. Choosing Tj(uy) as test function in (P,,) and the fact that T, (u]) < ul,

n
we obtain

(2.5) / Okun)(T)dz+ [ Alt, 2, T (1)) Vit P2Vt VT (1) dar it
Q Qr

U | Vg [P

< / LT drd + /Q O (1) (0) dz.

The first term is positive since we have O > 0, so after dropping nonnegative terms
and using (2.2), we obtain
(2.6)

A(t,x,Tn(un))|Vun|P*2VunVTk(un)dxdt</ Uy, | Ty (up )| da dt+E|uol| 1 ()
Qr Qr

According to conditions (1.1) and for n > k > 0, we get

. /
2.7 VT (up)|P dedt < k uy da dt + kljuol| L1 (q)-
(2.7) AL QTI )| o, £1(Q)
Therefore (2.4) is established. O
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Lemma 2.5. Let u,, be the solutions to problems (P,). Then

(2.8) B/ M”V;dedt g/ uy, do dt + |luol| L1 ()
Qr (un +1/n) Qr

Proof. Choosing T} (uy)/h as a test function in (P,,), dropping the nonnegative
terms, we obtain

B/ o P i) dxdt</ ur
qu(un‘+'1/n00+l h S . n

Iﬁ(un)
h

1

dz dt + —/ |Oh (uy,)(0)] dz.
h Ja

Using the fact that |Th(u,)/h| < 1 and (2.2), we have

Un|Vun P Th(uy,) /
B/ dzdt < u! dxdt + ||ugll71q)-
o (Un +1/n)0H R o, l[uollr ()

Letting h tend to 0 and by Fatou’s Lemma, we deduce (2.8). O

We shall denote by C' or C; various constants depending only on the structure
of A, p, 0, r, T, up, |Q] for j € N.

Lemma 2.6. Let u,, be the solutions to problems (P,,). Then there exists a pos-

itive constant C' such that

ltnllzwe) < Cs lltnll oo rwiriy SC YneN.

Proof. Choosing ¢ = (u, + 6)” — ¢6” as a test function in (P,), where v > 0,

using (1.1), we obtain

|V, |P
(6 +un)e

Un |[Vun [P
Qr (Un +1/n)f+1

p
<B/ Vel g gyt
Qr (Un +1/n)fF

T
/ (O, (U + )7 — 6¥) dt + 51// (tn 4 6)" " dadt
0 Qr

+B (up +6)” dadt

—l—/ ufb(un—l—é)”—/ uy 0¥ da dt,

dropping the nonpositive term on the right-hand side and putting v = 1, we get

T 0
p 1-6 B Buy, (un, + 9)
/0 <8tun,un>dt+/T [V P (u, + 9) ((5+un)9—9+1 + (n + 1/n)9+1) dzdt
Up |V, |P
0 (tn + 1/n)0+1

< Bé dxdt—i—/ Uy (up, + 6) de dt.
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Since o — 0 + 1 > 0, there exists a positive constant Cy such that

B Bt(t +6)°

> C 0 Ve=0.
Gt o)e 0 Gt inypri = 07

So, after dropping nonnegative terms, we obtain

Up |V, |P
Qr (un +1/n)0t1

1
—l—/ u;(un—l—é)dmdt—l—a/ugdm.
T Q

co/ |Vt [P (uy, +6)' =% dzdt < BS dz dt

Using (2.8) and the fact that u], < (u, +96)", up € L*(02), we get

CO/ |Vt [P (un, +6) 70 dadt < B [ (un +6)" dzdt + / (un + 6) T dzdt + C

QT T

<C (up +6)"THdzdt + C,
Qr

which implies
/ |V (ty 4+ 0)PH=0/PPdedt <C | (up +6)dadt +C.

T Qr

Using Poincaré inequality, we have
/ (Un + 0P 0dadt <C [ (up +06)dzdt +C,
T Qr
since r +1 < p+ 1 — 0, Young inequality yields
1
/ (ty, + 6)PT1=0dzdt < 5 / (ty, + 6P dzdt + C,

T T
which implies that (u, + 6), is bounded in LP*1=%(Q7), so (u,), is bounded in
LPH1=9(Qr). Now, we prove that the sequence (u!), is bounded in L™(Qr) for
some m > 1N 4 1. We choose u] as a test function in (P,), where n > 1, we find

n+1 p
Qr n Qr n T

With the same previous calculations, we find

140
p 17—9 /877 Bun
Jo 1o (s e * o g ) 4

1
< ur“’daz:dt—l——/um'1 dex.
/T " n+1Jg °
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Since 1 — 6 > 0, there exists a positive constant C; such that

Bn Bt'*?
t1—9(6—|—t)@ + (t+1/n)9+1 2C1 >0 V¢>D0.
So,
(2.9) / Pt dzdt < C | wltdzdt 4 C.
T Qr

We now choose n+r = p+1—6 (observe that > 1), so p+n—0 = 2(p+1—6)—(r+1).
Then by (1.3) and (2.9), we obtain that wu, is bounded in L2PT1=0)=(r+1)(Qr).
Consequently, an iterating procedure gives us that (u,) is bounded in L*(Qr) for all
< co. Indeed, if we consider 7; > 1 such that r+m =2(p+1-0) — (r+1), (2.9)
and the fact that (u,) is bounded in L2P+1=0)=+1)(Q)  then it is bounded in
L3wH1=0)=2(r+1) " Now consider 72 > 1 such that r + 799 = 3(p+ 1 —60) — 2(r + 1)
and deduce that (u,) is bounded in L*P+1=0)=3("+1)(Q;). Hence, we can obtain
that (uy) is bounded in L@+D®+1=0)=a(r+1) (1) for all ¢ € N. Since

(@+D)p+1-0)—qr+1)=qlp—r—0)+p+1-0—>00 asq— o,
we deduce that (u,) is bounded in L*(Qr) for all u < co. Because there is n’ > 0
such that (W' (p—r—0)+p+1—-10)/r > (N/p) + 1,

N
(ur) is bounded in L™(Qr) for some m > m + 1.

n

Standard parabolic estimates, performed using only the principal part of the operator
(see for example [5]), and taking advantage of the nonnegativity of the lower order
gradient term, then imply that (u,), is bounded in L>°(Qr). Therefore by (2.7),
we have

HUYLHLP(O,T;WO“’(Q)) <C
Taking n large enough, we get T),(u,) = u!, and T}, (uy,) = up, so we conclude that u,
is a weak solution of

Up |V, [P

Ayup — div(A(t, , un) [Vun[P > Vu,) + Bm =up inQr,
G100 ua(0,2) = wo(a) e
Up =0 on I'r.

O

Now, we are going to prove the strict positivity of the sequence of approximated
solutions u,,.
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Proposition 2.7. Let w be a compactly contained open subset of ). Then there
exists a positive constant C,, r such that u, > C, r in (0,T) x w.

Proof. Following the ideas in [11], we define for s > 0,

s 4
Hn(s) = / (5 = T) dT’ (I)n(s) = eiBH"(S)/ﬁv
o (T+1/n)

where 0 < 6 < 1 and B > 0. Taking ®,,(u,)v, with v € LP(0,T; W, (Q)) N L>(Qr),
v > 0, as test function in (2.10) and using (1.1)—(1.2) and that

, —B (0+s)°
o (s) = 7ﬁcpn(s),

we obtain

T
/ (Dt B (1)) dt + / Aty 2, 1) | Vit P2V Vo, () da d
0 T

B

U’"|vun|p
—p [ VUl g, ", (u,

| G atmdedt [ e,
= 0.

After dropping the nonnegative term, we derive
t
(2.11) / (Optin,, @, (U )v) dt+/ Aty 2, un) [V, P2 Vu, Vo, (u, ) dz dt
0 T
> / ur @y, (up)v da dt.
T

Now, we consider the nonincreasing function :

1 1
1/)(8):/ <I>n(t)dt:/ e BH.(1)/B gy

S

Then, inequality (2.11) implies that

T
(2.12) _/0 <8t(w(un)),v>dt—/ Aty 2, wn) Vi [P~ 2V 4 () Vo da dt

> / D, (up)uyvdadt > / (P (up) — Duyvdedt.
{0<u, <1} {0<un<1}
We call
A(t,z,s) = At, 2,971 (5)) [V (s)[P72,
and

H(s) = (1= u (¥~ (s)upx(o<un<1}-
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Thus, see [2] for instance, we deduce that ¥ (u,) is a sub-solution of

Oz — div(A(t,z,2)Vz) = H(z) in Qr.

Since H is a nonnegative term and ug > 0 in 2, we can apply Lemma 3.12 in [6] to
the previous equation to obtain the existence of ¢, + > 0 such that

Y(up) <cor V(t,z)€(0,T) xwand Vn > 1.
By the definition of 1, there exists C,, 7 > 0 (independent of n) such that

Uy = w_l(cMT) =Cyr in(0,T) X w.

2.1.1. Passage to the limit.

Lemma 2.8. Let A be a function satisfying (1.1) and let u,, € LP(0,T, Wol’p(Q))
be a sequence of weak solutions to (2.10). Then there exists a subsequence of uy,
(still denoted by w.,,) converging to a measurable function u a.e. in Qr, and

(2.13) Vu, — Vu a.e. in Qr.

Proof. Going back again to (2.10), the sequence (Ou,,) remains in a bounded
set of the space

p

L0, 7w (@) + LHQr), o = 2

Therefore, (9;u,) is bounded in L'(0,T; W~15(Q)), for all s < N/(N —1). So, we
can use Corollary 4 of [10] to see that

uy, is relatively compact in L'(Qr).

Summing up, there exists a function u € LP(0,T; WO1 P(02)) and a subsequence, still
denoted by (uy,), such that

(2.14) up, — u weakly in LP(0, T Wol’p(Q)),
(2.15) un, — u strongly in LP(Qr) and a.e. in Q7.

Now, we prove that
(2.16) VTi(un) = VTi(u) strongly in (LP(Qr))™ VEk € N.
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We also introduce another time-regularization of truncations, we will use the sequence
(Tk(u)), as approximation of Tj(u). For v > 0, we define the regularization in time
of the function Ty (u) given by

(2.17) (T (), (t, ) == v / "I (u(s, ) ds + e Ty (uo),

—0o0

where Ty (u(s,z)) is the zero extension of u for s < 0 (see [14]). Applying this
regularization to the truncatures Ty (u.,), we have the following properties:

> (T (um))w)e = v(Th(um) = (T (um))w),

> ((Th(um))w ) (0, 2) = Ty, (uo),

> (T (um))w)| <K,

> (Th(tm))y — Ti(um) strongly in LP(0, T; W, P(Q)) as v — co.
Considering the function ¢y (s) defined by

oa(s) = se)‘SQ, A>0,

in what follows we use that for every a,b > 0 we have

a . b?
(2.18) ap’\(s) — bleoa(s)] = 3 if A > 1z

We also denote by 7(m,n,v) any quantity I such that

lim lim lim I =0,
V—>00 N—>00 M—» 00

likewise 7(n,v) denotes a quantity I such that lim lim I =0. Let ¢ be a function
V—>00 N—r 00

in C2°(€2) such that ¢ > 0. By the same technique as in [1] we have that

T
(2.19) / (Ortins 3 (Te(tin) — (Te(tim)))) dt > 7(m, n, v).

Using (2.19) and taking ¥y = o (Tk(un) — (Tk(um)) )¢ as a test function in (2.10),
we obtain

(2.20) T(m,n,y)—i—/ A(t,m,un)|Vun|p_2Vun

T

X V(Ti(tn) = (T () )05 (T (un) = (T (um))y) ¢ da dt

Up | Ve, [P
B — )y dxdt
i /QT (un + 1/n)0+1w)‘ v

< / ur iy dedt

- / At 2, 1) [Vt P2V n Voo (T (un) — (Ti (1)) da dit.

T
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By (2.15), (Tk(tum))y — (Tk(u)), a.e. in Q7 and we have

lupba| < flujll Lo (@r)er(2k) € L (Qr),

by the Lebesgue dominated convergence theorem,

lim (lim ( lim / ufgh)) =0.
V—00 \ n—00 \ M—r00 QT

By writing Q7 = {u, < k}U{u, > k} and adopting the technique used in [1], we have

lim lim lim Aty 2, u0) [ Vun P2V u, Voo (T (un) — (T (tm))y) = 0.

V—00 N—>00 M—>00 QT

Therefore
(2.21)
uy iy — / A(t, x, un)|Vun|p*2VunV¢g0)\(Tk(un) — (T (um))w) = 7(m,n,v).
QT Qr

We next turn to consider the last term on the left-hand side of (2.20). Choosing
w CC Q with supp ¢ C w, by the nonnegativity of ¢x(k — (Tk(u)).,), we have that

p
(2.22) lim Un|Vtn|

-_— dx dt
meso J o (tn + 1/n)071 Yy do

Up |V |P
by dzdt > / _Un[VUAT__
{Cor<unhy (Un +1/n)0F

> — Crr(w) / VT (1) P55 dz dt

Qr

where C, r(w) is a positive constant such that

1
Un max — =Cpr(w) Vn>>1.

2.23 ——— < =
(2.23) (Un + 1/0)0FL = w, €[Cor k] ub

From the convergence
V(Ti(tm))y — V(Ti(u)), weakly in (LP(Qr)) as m — oo

we get, by using (2.20)—(2.21) and (2.22), that
(2.24)

Q At @, un)[Vun P2V un V (Ti (un) = (T (w))0)@4 (T (un) = (Ti(u)) )¢ da dt

— BChr(w) / VT4 (1) P05 | dz dt < 7(v, ).

Qr
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Note that

/ A(t,x,un)|Vun|p_2Vun
X V(Tie(un) = (T (u) )5 (Tr (un) = (The())dX u, >4y da dt
= —/ A(t, 2, un) [V [PV, V(T () o) (k= (Th (1)) 90X fu, 5} dz dt

=7(v,n),

so adding

- / At 2, 1n) [V (T (1)) [P~29 (T ()
X V(T (tn) — (Ti(w)) )y (Ti (1) — (Ti(10))) dardt = 7w, m).

On both sides of (2.24) and since
(2.25)

[ VBl dede <27 [ (9T ) - (T, do

T T

P / IV (T (), [P ] d dt
Qr
—gr-1 / IV (T (un) — (Ty()),) P oa| dee dt + 7w, ),

and using the following well-known inequalities that hold for any two real vectors &, n
and a real p > 2,

(2.26) (1€/P72€ — InlP~*n) (€ = m) > 227P|¢ — nI?,
we find, by using also (1.1) and (2.25), for alln > k > 0,

B
T

—2p_1BCk7T(w)/ V(T (un) — (T (w)) Ploa(Th (un) — (Tr(u)),)|¢ da dt

T

/Q IV (Tk(un) = (Te(w)u)IP A (Ti () — (Ti(u))y )¢ da dt

< 7(v,n).

Choosing A such that (2.18) holds with a = 227P3/(§ + k)¢ and b = 2P~ BCj, 1 (w),
we obtain (2.16) by setting v — oco. From this result we also deduce that (up to
subsequences)

Vu, — Vu almost everywhere in Q.
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Lemma 2.9. We have
un|vun|p |vu|p
(tp + 1/n)0+1 u?

(2.27) strongly in L*(Qr).

Proof. In view of (2.13) and (2.15), we have

U |[Vun P [Vul? .
(i + 1 /)P — " a.e. in Q.

Now, we shall obtain local equi-integrability of wu, |V, |P/(u, + 1/n)°T! on Q7. Ob-
serve that

_ un|Vun P _ un|Vua|P
dzdt = n) dx dt.
/ ‘/“n>k (un + 1/n)oH / /u,LZk (un + 1/n)0+1 T (un) dz

We choose ¢ = Ty (uy) as a test function in problems (2.10), we find

u,,(Tx)
/ dx/ o)do + Aty 2, un) |V [P~ 2Vu, VT (u,) d dt
Qr
U |[Vup [P
+/QT (un+1/n)‘9+1 T (un) dz dt

un (0,2)
:/ u:LTk(un)dxdt—l—/ dx/ Tk (o) do.
T Q 0

So, after dropping the nonnegative terms, we derive

/ UVl )da:dt</ ul | T (u )lda:dt+/ dx/u"(o’x) | Ti(0)] do
QT(un+1/n)9+1 k\Un X or nlLk{Un 0 o k .

Taking into account that for any M > 0, 0 < [Tk(s)] < M + klg=pr, s € RT, we
have

T
/ | T ()| A dt < MClltn [0 +k/ / o dadt,
QT 0 Uy >M

wn (0,2) T
/ dx/ |Ty(0)|do < Mluol| L1y + k/ / uon, dz dt.
Q 0 0 Ju,>M

Consequently, we have

un|Vun|
dx dt
/ ~/un>k (wn 4 1/n)0+1

T
< —(MC’—i—k‘/ / u;dxdt—l—MHuOHLl(Q)—f—k‘/ / uondxdt)
k 0 Up >M 0 Up >M
M T T
-+ / / X{un>M}u2 dz dt + / / X{un>M}UOn dz dt.
0 Q 0 Q

and
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We take M = \/E we obtain

\% . .
(2.28) / / tn| un|0 T dzdt —k=°° () uniformly with respect to n,
unzk (Un +1/n)0F

then, there exists ky > 1 such that

Up |V, [P €
(2.29) / /u i Cn+ 1Jn )9+1dxdt<§ Vk > koand Vn € N.
Consequently, if £ CC w, we have
(2.30)

Up |V, |P
/ / (i + 1) 9+1dxdt
~ up|Vug [P / / _ up|Vug[P
dx dt dx dt
/ /En{u,, >k} (un +1/n) 6+1 + B {un <k} (un + 1/n)0+1 T

un|Vun|
dzdt + Cp r(w / / |VT (un)|P dz dt.
/ /}sm{u,L>k} (un +1/n)f*1 En{u, <k}

From (2.14) there exist n. and J. such that for every E CC Q with meas(E) < J.

we have
T €
VT (up)fPdedt < ———— Vn > n..
/0 /En{u,,gk} VT () 2Ck,r(w)

By (2.29), (2.30), and taking n > n., k > ko, we see that meas(E) < d. implies

un|Vun|
dz dt .
/ / un ¥+ 1/n 0+1 rat <e

We deduce that w,|Vu,|?/(u, + 1/n)?+! is equi-integrable in Qr, then by Vitali’s
theorem convergence, we have (2.27) and |Vu|?/u® € LY(Qr). O

Lemma 2.10. The sequence (u,) is a Cauchy sequence in C([0,T]; L'(2)),
hence u,, converges to u € C([0,T]; L*(Q)).

Proof. Todo this, fixt € [0,T]. Taking Tj(un —um) as a test function in (2.10)
for u,, and u,,, subtracting up both identities, we deduce that

/ Ok (ttn (£) — () dz
Q

+ / (A(t, 2,1 |V P2V, — A(t, 2, U )|Vt P72V ) VT (U, — ) daz dt

Un |V, |P U |Vt |P
B - 1 n — Ym
- /, ((Un +1/n)f+ (uy, + 1/m)9+1) k(Un — up) dz dt

< / T, — (| T (i — )| dz +/ 10 (1 (0) — wm (0))] dz.
t Q
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So, by (2.2) we obtain
/ Ok (ttn (t) — () dz
Q

|A(t Ty U ) |V |P 72V — Aty 2,00 ) [V [P~ 2V, || VT (1 — )| dz dt

U |[Vun [P U | VUi |P
Bk ‘ n _ dz dt
* / N+ 1) (g + 1/m)o 1 |

luy, — un, |da:dt+k:/|un ) — U (0)] da.
Qt

Using (2.2) and dividing this inequality by k, we obtain

sup /|un — up (t)] de

telo, T]

g . |A(t, 2, U ) |V P72V — A(t, 2, 1) |V P2V, | [V Tk (t, — )| da dt
Qr

4B U |[Vup [P U |V |P

or T F T T 3P

k

—|—/ |uy, — urm|dxdt+/ |tr, (0) — uy, (0)] dz + 3
T Q

By (1.1), (2.13), (2.14) and (2.15), we have

dx dt

(2.31) AL, @, U |Vt P2V — AL, 2, 1) |V P2V, | = 0 in L7 (Qr).

Taking into account (2.27) and letting k& — 0, we deduce that (uy) is a Cauchy
sequence in C([0,T]; L*(Q2)). Consequently, u, — u in C([0,7T], L*(2)). This ends
the proof of Lemma 2.10. O

2.2. The end of the proof of Theorem 2.3. Let ¢ € LP(0,T; W, (Q)) N
L>(Qr). We have
(2.32)

—/un(O)go(O)dx—i—/ uné‘tgadxdt+/ Alt, 2z, u,) |V, P2V, Ve dz dt
Q Qr

T

pdaxdt = / uy @ dz dt.
Qr
Arguing as in (2.31), we have

lim A(t, z, up)|Vunp P~ 2Vuanodxdt—/ A(t, z,u)|VulP 2 VuVp dz dt.
Qr

n—oo
Qr

Therefore by (2.27), we can easily pass to the limit in (2.32). Theorem 2.3 is proved.
O
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3. L! INITIAL DATA

Theorem 3.1. Given uy € L*(Q), suppose that (1.3) holds true. Then problem
(P) has at least a weak solution u, ie., a function u belonging to L(0,T; Wy *(Q)) N
C([0,T); LY(2)), u > 0, |Vu|P/u? € LY(Qr), such that

(3.1) —/u(O)gp(O)dx—l—/ uOppdrdt + Aty z,u) | VulP 2 VuVe dz dt
Q T Qr
|Vul? 6N

B dxdt = "podxdt =p— ——
+ QTuesﬁx /Tuwfc,quJrl

for every p € W1°°(0,T; L>°(Q)) and such that ¢(T) =0 in .

3.1. Proof of Theorem 3.1. Let (ugn), won = Tn(ug) = 0 be a sequence of
bounded functions defined in €2, which converges to ug in L!(£2), such that

{ luonll 1) < [luollL1(o),

Uon < n.

A nonnegative weak solution u,, € L?(0,T; W,y"*(€2)) N L>(Qr) to problem (P) with
un (0, 2) = ugp(x) does exist by Theorem 2.3. Therefore, w,, satisfies

T
(3.2) / (Optn, @) dt —|—/ Aty 2, un) | Vun [P~ 2Vu, Vo dr dt
0 T

|Vu,[P

+ B 5
Qr Un

pdxdt = / urpdadt
T

for all ¢ € LP(0,T; Wy P(Q)) N L®(Qr). Using the same technique as in Proposi-
tion 2.7, there exists a positive constant C,, r such that

(3.3) Up = Cyur in (0,T) X w,
where w is a compactly contained open subset of €.

Lemma 3.2. Assume that (1.3) hold with p > 2 and u,, is the solution to prob-
lems (3.2). Then there exists a positive constant C' such that
(3.4) / u;, dedt < C,
T

ON
. nl? <G, =p— =
(3.5) /T|Vu [fdzdt < C, ¢ Nl
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Proof. Take ¢ = Ti(u,) as a test function in the weak formulation (3.2).
By (1.1), we have

(3.6)
/@1(un)(T)dx+/ L|VT1(un)|pdxdt+B/ |vun|pT1(un)dxdt
Q T (5+un)9 T ufl
é/ u;Tl(un)dxdt—i—/@1(un)(0)dx.
T Q
Since S T IP
/ [V Tl(un)da:dt>/ Vunl? g at,
T u’n {u-,L>1}ﬂQT un

dropping nonnegative terms in (3.6), it follows that

(3.7) B/ [Vun|”
{un>1}NQr uf)

</Tu;Tl(un)dxdt—l—/Q@l(un)(O)dx

< / UZ—H dxdt—l—/ ’U/;dl‘dt-f— H’U,QHLl(Q)
{un<1}NQT {un>1}NQr

<|Qrl+Ci+C (un —1)" dz dt.

{un>1}NQr

dx dt

Consequently, denoting G1(r) = r — T1(r), we get the inequality

/ |V, [Puy,? dedt < Co + 02/ (G1(up))" dzdt,
{un>1}NQr {un>1}NQr

SO

/ |V, [P (G (un) + 1) dzdt < Cy + 02/ (G (uy))" da dt,
{un>1}NQr {un>1}NQr

which yields

(1 - Q)ip / V(G (un) + 1)) P d dt
p {un>1}ﬂQT

<Co+Cy / (G (up))" da dt.

{un>1}NQr

Now, the Poincaré inequality implies

/ (G1(up) + 1P~ dxdt < C3 + Cg/ (G1(up))" dadt.
{un>1}ﬂQT

{un>1}NQr

Observe that » < p — . By Young’s inequality we obtain
(3.8) / G ()P~ dadt < Cy.
{un>1}NQr
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Therefore

/ uy, dedt = / (G1(up)+ 1) dadt < Cs.
{un>1}NQr {un>1}NQr

So (3.4) is proved. To prove (3.5) we have by (3.4) and (3.6)
p
(3.9) / VT ()P i dt = / VTG 5 ve deat
T fun<yngr (0 +un)?
VT (un) [

< (1+5)@/ VI i < o
un <1INQr (5+un)

From (3.4), (3.7) and ¢ = p — ON/(N + 1), we write
(3.10) / IVup|? da dt
{un>1}NQr

q
_ / Vunl® oarv gy
{

0q/p

un >1}NQr  Un

P a/p 1—q/p
< ( / Vel 4, dt> < / ult/ (=9 dg dt>
{un>13nQr  Un {un>1}NQr

1—q/p
SC’(/ uidmdt) , Szw.

By (2.2) and (3.6), we have

(3.11) sup /un(t,m) dz < C.

tefo, 7] JQ

Use the following interpolation argument: ||| sy < HunHLl(Q)HunHLq (@) with
1—7=(1-2s)/(1-4q%)(¢*/s), where ¢* = Nq/(N —q) if ¢ < N and ¢* > 1
satisfying (1 — 7)s = ¢ otherwise. Using (3.11) and the Sobolev inequality we obtain

T (1
/ <c / IVl i d

By this last inequality, (3.10), ¢ < p, and (3.9) we have

1-q/p
(3.12) / [Vu,|?dedt < C(/ [Vu,|?de dt)
{un>1}NQr QT

1-q/p
<C+C</ |Vun|qudt) ,
{un>1}NQr

/ [Vu,|?dzdt < C.
{un>1}NQr

Furthermore, (3.9) implies estimate (3.5) and Lemma 3.2 is prooved. O

which implies that
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3.2. Passage to the limit and finishing the proof of Theorem 3.1. Arguing
as in Lemma 2.8, we obtain a subsequence (u,) and a mesurable function u €
L9(0, T, Wy 9(€2)) such that

(3.13) u, — u weakly in L9(0,T; W) 4(Q)),
(3.14) Up — u strongly in LY(Qr) and a.e. in Qr,
(3.15) Vu, — Vu a.e. in Qp.

From (3.14), (3.15), (1.1), and ¢/(p — 1) > 1, we obtain
(3.16)  A(t,z,un)|Vu, [P "2V, — A(t, z,u)|Vu|P~2Vu in (LYP=D(Qr)N.

By the technique used in the proof of Lemma 2.9,

|Vu,|P R |VulP

(3.17) UfL - strongly in L*(Q7).
We also deduce that
(3.18) u” — u” strongly in L' (Qr).

T
n

Indeed, thanks to (3.14), we just have to show that the sequence (u!) is equi-

integrable, but this is straightforward taking into account (3.4), (3.8), r < p — 0,
and Holder’s inequality. Finally, for ¢ € W1°°(0,T; L°°(R)),

(3.19) —/un(O)go(O) dfc—l—/ uné‘tgodxdt—f—/ Aty 2, un) | Vun P2 Vu, Vo dr dt
Q T T
P
+ B |VU9n| @dxdtz/ up @ dz dt.
Qr Un T

Using (3.16), (3.17) and (3.18), we can easily pass to the limit in (3.19). Taking into
account (3.3) and Lemma 2.10, Theorem 3.1 is proved. O
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