Previous |  Up |  Next

Article

Title: A class of quantum doubles of pointed Hopf algebras of rank one (English)
Author: Sun, Hua
Author: Li, Yueming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1319-1331
Summary lang: English
.
Category: math
.
Summary: We construct a class of quantum doubles $D(H_{D_n})$ of pointed Hopf algebras of rank one $H_{\mathcal {D}}$. We describe the algebra structures of $D(H_{D_n})$ by generators with relations. Moreover, we give the comultiplication $\Delta _{D}$, counit $\varepsilon _D$ and the antipode $S_{D}$, respectively. (English)
Keyword: pointed Hopf algebra
Keyword: quantum double
Keyword: rank one
MSC: 16G30
MSC: 16T05
idZBL: Zbl 07790576
DOI: 10.21136/CMJ.2023.0015-23
.
Date available: 2023-11-23T12:29:50Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151962
.
Reference: [1] Chen, H.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version.Commun. Algebra 27 (1999), 5011-5032. Zbl 0942.16038, MR 1709261, 10.1080/00927879908826745
Reference: [2] Chen, H.: Skew pairing, cocycle deformations and double crossproducts.Acta Math. Sin., Engl. Ser. 15 (1999), 225-234. Zbl 0933.16038, MR 1714075, 10.1007/BF02650666
Reference: [3] Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models.Nucl. Phys., B, Proc. Suppl. 18 (1990), 60-72. Zbl 0957.81670, MR 1128130, 10.1016/0920-5632(91)90123-V
Reference: [4] Doi, Y.: Braided bialgebras and quadratic bialgebras.Commun. Algebra 21 (1993), 1731-1749. Zbl 0779.16015, MR 1213985, 10.1080/00927879308824649
Reference: [5] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [6] Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to ${sl}_2$.J. Algebra 330 (2011), 103-129. Zbl 1273.17019, MR 2774620, 10.1016/j.jalgebra.2011.01.010
Reference: [7] Krop, L., Radford, D. E.: Finite-dimensional Hopf algebras of rank one in characteristic zero.J. Algebra 302 (2006), 214-230. Zbl 1126.16028, MR 2236601, 10.1016/j.jalgebra.2006.03.031
Reference: [8] Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras.J. Am. Math. Soc. 3 (1990), 257-296. Zbl 0695.16006, MR 1013053, 10.2307/1990988
Reference: [9] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics. 82. AMS, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [10] Panov, A. N.: Ore extensions of Hopf algebras.Math. Notes 74 (2003), 401-410. Zbl 1071.16035, MR 2022506, 10.1023/A:1026115004357
Reference: [11] Scherotzke, S.: Classification of pointed rank one Hopf algebras.J. Algebra 319 (2008), 2889-2912. Zbl 1149.16033, MR 2397414, 10.1016/j.jalgebra.2008.01.028
Reference: [12] Suter, R.: Modules over $U_q({sl_2})$.Commun. Math. Phys. 163 (1994), 359-393. Zbl 0851.17015, MR 1284788, 10.1007/BF02102012
Reference: [13] Xiao, J.: Finite dimensional representations of $U_t(sl_(2))$ at roots of unity.Can. J. Math. 49 (1997), 772-787. Zbl 0901.17009, MR 1471056, 10.4153/CJM-1997-038-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo