[1] Akkarajitsakul, K., Hossain, E., Niyato, D.:
Distributed resource allocation in wireless networks under uncertainty and application of Bayesian game. IEEE Commun. Magazine 49 (2011), 8, 120-127.
DOI
[2] Bhaskar, U., Cheng, Y., Ko, Y. K., Swamy, C.: Hardness results for signaling in Bayesian zero-sum and network routing games. In: Proc. 2016 ACM Conference on Economics and Computation, pp. 479-496.
[3] Chen, G., Cao, K., Hong, Y.:
Learning implicit information in Bayesian games with knowledge transfer. Control Theory Technol. 18 (2020), 3, 315-323.
DOI |
MR 4141568
[4] Chen, G., Ming, Y., Hong, Y., Yi, P.:
Distributed algorithm for $\epsilon$-generalized Nash equilibria with uncertain coupled constraints. Automatica 123, (2021), 109313.
DOI |
MR 4164533
[5] Gro{\ss}hans, M., Sawade, C., Bruckner, M., Scheffer, T.: Bayesian games for adversarial regression problems. In: International Conference on Machine Learning 2013, pp. 55-63.
[6] Guo, S., Xu, H., Zhang, L.:
Existence and approximation of continuous Bayesian Nash equilibria in games with continuous type and action spaces. SIAM J. Optim. 31 (2021), 4, 2481-2507.
DOI |
MR 4327328
[7] Guo, W., Jordan, M. I., Lin, T.: A variational inequality approach to Bayesian regression games. In: 2021 60th IEEE Conference on Decision and Control (CDC), pp. 795-802.
[8] Harsanyi, J. C.:
Games with incomplete information played by "Bayesian'' players, I-III; Part I. The basic model. Management Sci. 14 (1967), 3, 159-182.
DOI |
MR 0246649
[9] Huang, L., Zhu, Q.: Convergence of Bayesian Nash equilibrium in infinite Bayesian games under discretization. arXiv:2102.12059 (2021).
[10] Huang, S., Lei, J., Hong, Y.:
A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games. IEEE Trans. Automat. Control 68 (2023), 3, 1753-1759.
DOI |
MR 4557578
[11] Koshal, J., Nedić, A., Shanbhag, U. V.:
Distributed algorithms for aggregative games on graphs. Oper. Res. 64 (2016), 3, 680-704.
DOI |
MR 3515205
[12] Krishna, V.: Auction Theory. Academic Press, London 2009.
[13] Krishnamurthy, V., Poor, H. V.:
Social learning and Bayesian games in multiagent signal processing: How do local and global decision makers interact?. IEEE Signal Process. Magazine, 30 (2013) 3, 43-57.
DOI
[14] Liang, S., Yi, P., Hong, Y.:
Distributed Nash equilibrium seeking for aggregative games with coupled constraints. Automatica {\mi85} (2017), 179-185.
DOI |
MR 3712859
[15] Meirowitz, A.:
On the existence of equilibria to Bayesian games with non-finite type and action spaces. Econom. Lett. 78 (2003), 2, 213-218.
DOI |
MR 1957297
[16] Milgrom, P. R., Weber, R. Journal:
Distributional strategies for games with incomplete information. Math. Oper. Res. 10 (1985), 4, 619-632.
DOI |
MR 0812820
[17] Nedic, A., Ozdaglar, A., Parrilo, P. A.:
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 4, 922-938.
DOI |
MR 2654432
[18] Rabinovich, Z., Naroditskiy, V., Gerding, E. H., Nicholas, R. J.:
Computing pure Bayesian-Nash equilibria in games with finite actions and continuous types. Artif. Intell. 195 (2013), 106-139.
DOI 10.1016/j.artint.2012.09.007 |
MR 3024198
[19] Rynne, B., Youngson, M. A.:
Linear Functional Analysis. Springer Science and Business Media, 2007.
MR 2370216
[20] Ui, T.:
Bayesian Nash equilibrium and variational inequalities. J. Math. Econom. 63 (2016), 139-146.
DOI |
MR 3476599
[21] Xu, G., Chen, G., Qi, H., Hong, Y.:
Efficient algorithm for approximating Nash equilibrium of distributed aggregative games. IEEE Trans. Cybernet. 53 (2023), 7, 4375-4387.
DOI
[22] Zhang, H., Chen, G., Hong, Y.: Distributed algorithm for continuous-type Bayesian Nash equilibrium in subnetwork zero-sum games. arXiv:2209.06391 (2022).