[1] Hennania, L. Ait, Lemdania, M., Said, E. Ould:
Robust regression analysis for a censored response and functional regressors. J. Nonparametr. Statist. 31 (2019), 221-2430.
DOI |
MR 3902150
[2] Barrientos-Marin, J., Ferraty, F., Vieu, P.:
Locally modelled regression and functional data. J.Nonparametr. Statist. 22 (2010), 617-632.
DOI |
MR 2682211
[3] Benkhaled, A., Madani, F., Khardani, S.:
Strong consistency of local linear estimation of a conditional density function under random censorship. Arab. J. Math. 9 (2020), 513-529.
DOI |
MR 4159735
[4] Boudada, H.:
A nonparametric estimation of the conditional quantile for truncated and functional data. Int. J. Math. Oper. Res. 21 (2022), 127-140.
DOI |
MR 4422724
[5] Boudada, H., Leulmi, S., Kharfouch, S.:
Rate of the almost sure convergence of a generalized regression estimate based on truncated and functional data. J. Sib. Fed. Univ. - Math. Phys. 13 (2020), 480-491.
DOI |
MR 4155489
[6] Demongeot, J., Laksaci, A., Madani, F., Rachdi, M.:
Functional data analysis: conditional density estimation and its application. Statist. 47 (2013), 26-44.
DOI |
MR 3023013
[7] Derrar, S., Laksaci, A., Sa\"{i}d, E. Ould:
On the nonparametric estimation of the functional $\psi$-regression for a random left-truncation model. J. Stat. Theory Pract. 9 (2015), 823-849.
DOI |
MR 3378117
[8] Derrar, S., Laksaci, A., Sa\"{i}d, E. Ould:
M-estimation of the regression function under random left truncation and functional time series model. Statist. Papers 61 (2018), 1181-1202.
DOI |
MR 4096407
[9] Fan, J.:
Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 (1992), 998-1004.
DOI |
MR 1209561
[10] Ferraty, F., Laksaci, A., Tadj, A., Vieu, P.:
Rate of uniform consistency for nonparametric estimates with functional variables. J. Statist. Plan, Inference 140 (2010), 335-352.
DOI |
MR 2558367
[11] Ferraty, F., Vieu, P.:
Nonparametric Functional Data Analysis. Theory and Practice. Springer Ser. Statist. New York 2006.
MR 2229687
[12] He, S., Yang, G. L.:
Estimation of the truncation probability in the random truncation model. Ann. Statist. 26 (1998), 1011-1027.
DOI |
MR 1635434
[13] Helal, N., Ould-Sa\"{i}d, E.:
Kernel conditional quantile estimator under left truncation for functional regressors. Opuscula Math. 36 (2016), 25-48.
DOI |
MR 3405828
[14] Horrigue, W., Sa\"{i}d, E. Ould:
Strong uniform consistency of a nonparametric estimator of a conditional quantile for censored dependent data and functional regressors. Random Oper.Stoch. Equat. 19 (2011), 131-156.
DOI |
MR 2805882
[15] Lemdani, M., Ould-Sa\"{i}d, E.:
Asymptotic behavior of the hazard rate kernel estimator under truncated and censored data. Comm. Statist. Theory Methods. 36 (2007), 155-173.
DOI |
MR 2391868
[16] Leulmi, S.:
Local linear estimation of the conditional quantile for censored data and functional regressors. Comm. Statist. Theory Methods 50 (2019), 3286-3300.
DOI |
MR 4279975
[17] Leulmi, S.:
Nonparametric local linear regression estimation for censored data and functional regressors. J. Korean Statist. Soc. (2020), 25-46.
DOI |
MR 4392464
[18] Leulmi, S., Messaci, F.:
Local linear estimation of a generalized regression function with functional dependent data. Comm. Statist. Theory Methods 47 (2018), 5795-5811.
DOI |
MR 3851988
[19] Leulmi, S., Messaci, F.:
A Class of Local Linear Estimators with Functional Data. J. Sib. Fed. Univ. - Math. Phys. 12 (2019), 379-391.
DOI |
MR 3973719
[20] Mechab, B., Hamidi, N., Benaissa, S.:
Nonparametric estimation of the relative error in functional regression and censored data. Chil. J. Statist. 10 (2019), 177-195.
MR 4054413
[21] Messaci, F., Nemouchi, N., Ouassou, I., Rachdi, M.:
Local polynomial modelling of the conditional quantile for functional data. Stat. Methods Appl. 24 (2015), 597-622.
DOI |
MR 3421675
[22] Stute, W.:
Almost sure representations of the product-limit estimator for truncated data. Ann. Statist. 21 (1993), 146-156.
DOI |
MR 1212170
[23] Woodroofe, M.:
Estimating a distribution function with truncated data. Ann. Statist. 13 (1985), 163-177.
DOI |
MR 0773160