Title: | Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations (English) |
Author: | Han, Wonho |
Author: | Kim, Kwangil |
Author: | Hong, Unhyok |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 68 |
Issue: | 5 |
Year: | 2023 |
Pages: | 661-684 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study high-order numerical methods for solving Hamilton-Jacobi equations. Firstly, by introducing new clear concise nonlinear weights and improving their convex combination, we develop WENO schemes of Zhu and Qiu (2017). Secondly, we give an algorithm of constructing a convergent adaptive WENO scheme by applying the simple adaptive step on the proposed WENO scheme, which is based on the introduction of a new singularity indicator. Through detailed numerical experiments on extensive problems including nonconvex ones, the convergence and effectiveness of the adaptive WENO scheme are demonstrated. (English) |
Keyword: | Hamilton-Jacobi equations |
Keyword: | WENO scheme |
Keyword: | adaptive WENO scheme |
Keyword: | nonconvex Hamiltonian |
Keyword: | convergence |
MSC: | 35F21 |
MSC: | 65M06 |
MSC: | 65M12 |
idZBL: | Zbl 07790540 |
idMR: | MR4645003 |
DOI: | 10.21136/AM.2023.0264-22 |
. | |
Date available: | 2023-10-05T15:13:31Z |
Last updated: | 2024-12-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151838 |
. | |
Reference: | [1] Abgrall, R.: Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations.SIAM J. Sci. Comput. 31 (2009), 2419-2446. Zbl 1197.65167, MR 2520283, 10.1137/040615997 |
Reference: | [2] Amat, S., Ruiz, J., Shu, C.-W.: On new strategies to control the accuracy of WENO algorithms close to discontinuities.SIAM J. Numer. Anal. 57 (2019), 1205-1237. Zbl 1436.65095, MR 3956155, 10.1137/18M1214937 |
Reference: | [3] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations.SIAM J. Sci. Comput. 38 (2016), A171--A195. Zbl 1407.65093, MR 3449908, 10.1137/140998482 |
Reference: | [4] Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations.SIAM J. Numer. Anal. 41 (2003), 1339-1369. Zbl 1050.65076, MR 2034884, 10.1137/S0036142902408404 |
Reference: | [5] Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 27 (2005), 1071-1091. Zbl 1105.65090, MR 2199921, 10.1137/040608787 |
Reference: | [6] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations.Math. Comput. 43 (1984), 1-19. Zbl 0556.65076, MR 0744921, 10.2307/2007396 |
Reference: | [7] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.SIAM Rev. 43 (2001), 89-112. Zbl 0967.65098, MR 1854647, 10.1137/S003614450036757X |
Reference: | [8] Henrick, A. K., Aslam, T. D., Powers, J. M.: Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points.J. Comput. Phys. 207 (2005), 542-567. Zbl 1072.65114, 10.1016/j.jcp.2005.01.023 |
Reference: | [9] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation.Appl. Math. Comput. 290 (2016), 21-32. Zbl 1410.65313, MR 3523409, 10.1016/j.amc.2016.05.022 |
Reference: | [10] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 21 (2000), 2126-2143. Zbl 0957.35014, MR 1762034, 10.1137/S106482759732455X |
Reference: | [11] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes.J. Comput. Phys. 126 (1996), 202-228. Zbl 0877.65065, MR 1391627, 10.1006/jcph.1996.0130 |
Reference: | [12] Kim, K., Hong, U., Ri, K., Yu, J.: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes.Appl. Math., Praha 66 (2021), 599-617. Zbl 07396169, MR 4283305, 10.21136/AM.2021.0368-19 |
Reference: | [13] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations.J. Sci. Comput. 65 (2015), 110-137. Zbl 1408.65053, MR 3394440, 10.1007/s10915-014-9955-5 |
Reference: | [14] Kurganov, A., Petrova, G.: Adaptive central-upwind schemes for Hamilton-Jacobi equations with nonconvex Hamiltonians.J. Sci. Comput. 27 (2006), 323-333. Zbl 1115.65093, MR 2285784, 10.1007/s10915-005-9033-0 |
Reference: | [15] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 28 (2006), 2229-2247. Zbl 1126.65075, MR 2272259, 10.1137/040612002 |
Reference: | [16] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes.J. Comput. Phys. 115 (1994), 200-212. Zbl 0811.65076, MR 1300340, 10.1006/jcph.1994.1187 |
Reference: | [17] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes.J. Comput. Phys. 284 (2015), 367-388. Zbl 1352.65422, MR 3303624, 10.1016/j.jcp.2014.12.039 |
Reference: | [18] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations.SIAM J. Numer. Anal. 28 (1991), 907-922. Zbl 0736.65066, MR 1111446, 10.1137/0728049 |
Reference: | [19] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws.SIAM J. Sci. Comput. 31 (2008), 584-607. Zbl 1186.65123, MR 2460790, 10.1137/070687487 |
Reference: | [20] Qiu, J.-X., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations.J. Comput. Phys. 204 (2005), 82-99. Zbl 1070.65078, MR 2121905, 10.1016/j.jcp.2004.10.003 |
Reference: | [21] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems.SIAM Rev. 51 (2009), 82-126. Zbl 1160.65330, MR 2481112, 10.1137/070679065 |
Reference: | [22] Xu, Z., Shu, C.-W.: Anti-diffusive high order WENO schemes for Hamilton-Jacobi equations.Methods Appl. Anal. 12 (2005), 169-190. Zbl 1119.65378, MR 2257526, 10.4310/MAA.2005.v12.n2.a6 |
Reference: | [23] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 24 (2003), 1005-1030. Zbl 1034.65051, MR 1950522, 10.1137/S1064827501396798 |
Reference: | [24] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes.J. Comput. Phys. 254 (2013), 76-92. Zbl 1349.65364, MR 3143358, 10.1016/j.jcp.2013.07.030 |
Reference: | [25] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws.J. Comput. Phys. 318 (2016), 110-121. Zbl 1349.65365, MR 3503990, 10.1016/j.jcp.2016.05.010 |
Reference: | [26] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations.Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. Zbl 1371.65089, MR 3652179, 10.1002/num.22133 |
. |
Fulltext not available (moving wall 24 months)