Previous |  Up |  Next

Article

Title: Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations (English)
Author: Han, Wonho
Author: Kim, Kwangil
Author: Hong, Unhyok
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 5
Year: 2023
Pages: 661-684
Summary lang: English
.
Category: math
.
Summary: We study high-order numerical methods for solving Hamilton-Jacobi equations. Firstly, by introducing new clear concise nonlinear weights and improving their convex combination, we develop WENO schemes of Zhu and Qiu (2017). Secondly, we give an algorithm of constructing a convergent adaptive WENO scheme by applying the simple adaptive step on the proposed WENO scheme, which is based on the introduction of a new singularity indicator. Through detailed numerical experiments on extensive problems including nonconvex ones, the convergence and effectiveness of the adaptive WENO scheme are demonstrated. (English)
Keyword: Hamilton-Jacobi equations
Keyword: WENO scheme
Keyword: adaptive WENO scheme
Keyword: nonconvex Hamiltonian
Keyword: convergence
MSC: 35F21
MSC: 65M06
MSC: 65M12
idZBL: Zbl 07790540
idMR: MR4645003
DOI: 10.21136/AM.2023.0264-22
.
Date available: 2023-10-05T15:13:31Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151838
.
Reference: [1] Abgrall, R.: Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations.SIAM J. Sci. Comput. 31 (2009), 2419-2446. Zbl 1197.65167, MR 2520283, 10.1137/040615997
Reference: [2] Amat, S., Ruiz, J., Shu, C.-W.: On new strategies to control the accuracy of WENO algorithms close to discontinuities.SIAM J. Numer. Anal. 57 (2019), 1205-1237. Zbl 1436.65095, MR 3956155, 10.1137/18M1214937
Reference: [3] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations.SIAM J. Sci. Comput. 38 (2016), A171--A195. Zbl 1407.65093, MR 3449908, 10.1137/140998482
Reference: [4] Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations.SIAM J. Numer. Anal. 41 (2003), 1339-1369. Zbl 1050.65076, MR 2034884, 10.1137/S0036142902408404
Reference: [5] Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 27 (2005), 1071-1091. Zbl 1105.65090, MR 2199921, 10.1137/040608787
Reference: [6] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations.Math. Comput. 43 (1984), 1-19. Zbl 0556.65076, MR 0744921, 10.2307/2007396
Reference: [7] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.SIAM Rev. 43 (2001), 89-112. Zbl 0967.65098, MR 1854647, 10.1137/S003614450036757X
Reference: [8] Henrick, A. K., Aslam, T. D., Powers, J. M.: Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points.J. Comput. Phys. 207 (2005), 542-567. Zbl 1072.65114, 10.1016/j.jcp.2005.01.023
Reference: [9] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation.Appl. Math. Comput. 290 (2016), 21-32. Zbl 1410.65313, MR 3523409, 10.1016/j.amc.2016.05.022
Reference: [10] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 21 (2000), 2126-2143. Zbl 0957.35014, MR 1762034, 10.1137/S106482759732455X
Reference: [11] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes.J. Comput. Phys. 126 (1996), 202-228. Zbl 0877.65065, MR 1391627, 10.1006/jcph.1996.0130
Reference: [12] Kim, K., Hong, U., Ri, K., Yu, J.: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes.Appl. Math., Praha 66 (2021), 599-617. Zbl 07396169, MR 4283305, 10.21136/AM.2021.0368-19
Reference: [13] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations.J. Sci. Comput. 65 (2015), 110-137. Zbl 1408.65053, MR 3394440, 10.1007/s10915-014-9955-5
Reference: [14] Kurganov, A., Petrova, G.: Adaptive central-upwind schemes for Hamilton-Jacobi equations with nonconvex Hamiltonians.J. Sci. Comput. 27 (2006), 323-333. Zbl 1115.65093, MR 2285784, 10.1007/s10915-005-9033-0
Reference: [15] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 28 (2006), 2229-2247. Zbl 1126.65075, MR 2272259, 10.1137/040612002
Reference: [16] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes.J. Comput. Phys. 115 (1994), 200-212. Zbl 0811.65076, MR 1300340, 10.1006/jcph.1994.1187
Reference: [17] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes.J. Comput. Phys. 284 (2015), 367-388. Zbl 1352.65422, MR 3303624, 10.1016/j.jcp.2014.12.039
Reference: [18] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations.SIAM J. Numer. Anal. 28 (1991), 907-922. Zbl 0736.65066, MR 1111446, 10.1137/0728049
Reference: [19] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws.SIAM J. Sci. Comput. 31 (2008), 584-607. Zbl 1186.65123, MR 2460790, 10.1137/070687487
Reference: [20] Qiu, J.-X., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations.J. Comput. Phys. 204 (2005), 82-99. Zbl 1070.65078, MR 2121905, 10.1016/j.jcp.2004.10.003
Reference: [21] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems.SIAM Rev. 51 (2009), 82-126. Zbl 1160.65330, MR 2481112, 10.1137/070679065
Reference: [22] Xu, Z., Shu, C.-W.: Anti-diffusive high order WENO schemes for Hamilton-Jacobi equations.Methods Appl. Anal. 12 (2005), 169-190. Zbl 1119.65378, MR 2257526, 10.4310/MAA.2005.v12.n2.a6
Reference: [23] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 24 (2003), 1005-1030. Zbl 1034.65051, MR 1950522, 10.1137/S1064827501396798
Reference: [24] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes.J. Comput. Phys. 254 (2013), 76-92. Zbl 1349.65364, MR 3143358, 10.1016/j.jcp.2013.07.030
Reference: [25] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws.J. Comput. Phys. 318 (2016), 110-121. Zbl 1349.65365, MR 3503990, 10.1016/j.jcp.2016.05.010
Reference: [26] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations.Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. Zbl 1371.65089, MR 3652179, 10.1002/num.22133
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo