Previous |  Up |  Next

Article

Title: Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder (English)
Author: Chen, Xuejiao
Author: Li, Yuanfei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 5
Year: 2023
Pages: 643-660
Summary lang: English
.
Category: math
.
Summary: The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium. (English)
Keyword: spatial behavior
Keyword: Forchheimer equations
Keyword: energy estimate bounds
Keyword: upper bound
Keyword: porous medium
MSC: 35B40
MSC: 35Q30
MSC: 76D05
idZBL: Zbl 07790539
idMR: MR4645002
DOI: 10.21136/AM.2022.0196-22
.
Date available: 2023-10-05T15:13:03Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151837
.
Reference: [1] Boley, B. A.: The determination of temperature, stresses, and deflections in two-dimen-sional thermoelastic problems.J. Aeronaut. Sci. 23 (1956), 67-75. Zbl 0070.18903, 10.2514/8.3503
Reference: [2] Chen, W.: Cauchy problem for thermoelastic plate equations with different damping mechanisms.Commun. Math. Sci. 18 (2020), 429-457. Zbl 1472.35048, MR 4101316, 10.4310/CMS.2020.v18.n2.a7
Reference: [3] Chen, W.: Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D.Asymptotic Anal. 117 (2020), 113-140. Zbl 1467.35048, MR 4158328, 10.3233/ASY-191548
Reference: [4] Chen, X., Li, Y., Li, D.: Spatial decay bounds for the Brinkman fluid equations in double-diffusive convection.Symmetry 14 (2022), Article ID 98, 22 pages. 10.3390/sym14010098
Reference: [5] Saint-Venant, A. J. B. De: Mémoire sur la flexion des prismes.J. Math. Pures Appl. (2) 1 (1856), 89-189 French.
Reference: [6] Firdaouss, M., Guermond, J.-L., Quéré, P. Le: Nonlinear corrections to Darcy's law at low Reynolds numbers.J. Fluid Mech. 343 (1997), 331-350. Zbl 0897.76091, MR 1465159, 10.1017/S0022112097005843
Reference: [7] Franchi, F., Straughan, B.: Continuous dependence and decay for the Forchheimer equations.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459 (2003), 3195-3202. Zbl 1058.35030, MR 2027361, 10.1098/rspa.2003.1169
Reference: [8] Gentile, M., Straughan, B.: Structural stability in resonant penetrative convection in a Forchheimer porous material.Nonlinear Anal., Real World Appl. 14 (2013), 397-401. Zbl 1254.76142, MR 2969842, 10.1016/j.nonrwa.2012.07.003
Reference: [9] Giorgi, T.: Derivation of the Forchheimer law via matched asymptotic expansions.Transp. Porous Media 29 (1997), 191-206. 10.1023/A:1006533931383
Reference: [10] Horgan, C. O.: Recent developments concerning Saint-Venant's principle: An update.Appl. Mech. Rev. 42 (1989), 295-302. MR 1021553, 10.1115/1.3152414
Reference: [11] Horgan, C. O.: Recent developments concerning Saint-Venant's principle: A second update.Appl. Mech. Rev. 49 (1996), S101--S111. MR 1021553, 10.1115/1.3101961
Reference: [12] Horgan, C. O., Knowles, J. K.: Recent developments concerning Saint-Venant's principle.Adv. Appl. Mech. 23 (1983), 179-269. Zbl 0569.73010, MR 0889288, 10.1016/S0065-2156(08)70244-8
Reference: [13] Horgan, C. O., Payne, L. E.: Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions.Arch. Ration. Mech. Anal. 122 (1993), 123-144. Zbl 0790.31002, MR 1217587, 10.1007/BF00378164
Reference: [14] Knops, R. J., Quintanilla, R.: Spatial behaviour in thermoelastostatic cylinders of indefinitely increasing cross-section.J. Elasticity 121 (2015), 89-117. Zbl 1326.35376, MR 3394434, 10.1007/s10659-015-9523-8
Reference: [15] Knops, R. J., Quintanilla, R.: Spatial decay in transient heat conduction for general elongated regions.Q. Appl. Math. 76 (2018), 611-625. Zbl 1397.58010, MR 3855824, 10.1090/qam/1497
Reference: [16] Knowles, J. K.: On Saint-Venant's principle in the two-dimensional linear theory of elasticity.Arch. Ration. Mech. Anal. 21 (1966), 1-22. MR 0187480, 10.1007/BF00253046
Reference: [17] Knowles, J. K.: An energy estimate for the biharmonic equation and its application to Saint-Venant's principle in plane elastostatics.Indian J. Pure Appl. Math. 14 (1983), 791-805. Zbl 0524.73001, MR 0714832
Reference: [18] Leseduarte, M. C., Quintanilla, R.: Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions.J. Appl. Anal. Comput. 7 (2017), 1323-1335. Zbl 1447.35085, MR 3723923, 10.11948/2017081
Reference: [19] Li, Y., Chen, X.: Phragmén-Lindelöf alternative results in time-dependent double-diffu-sive Darcy plane flow.Math. Methods Appl. Sci. 45 (2022), 6982-6997. MR 4443365, 10.1002/mma.8220
Reference: [20] Li, Y., Chen, X., Shi, J.: Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid.Appl. Math. Optim. 84 (2021), S979--S999. Zbl 1477.35173, MR 4316807, 10.1007/s00245-021-09791-7
Reference: [21] Li, Y., Xiao, S.: Continuous dependence of 2D large scale primitive equations on the boundary conditions in oceanic dynamics.Appl. Math., Praha 67 (2022), 103-124. Zbl 07478520, MR 4392408, 10.21136/AM.2021.0076-20
Reference: [22] Li, Y., Xiao, S., Zeng, P.: The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere.J. Math. Inequal. 15 (2021), 293-304. Zbl 1465.35018, MR 4364642, 10.7153/jmi-2021-15-22
Reference: [23] Li, Y., Zeng, P.: Continuous dependence on the heat source of 2D large-scale primitive equations in oceanic dynamics.Symmetry 13 (2021), Article ID 1961, 16 pages. 10.3390/sym13101961
Reference: [24] Lin, C.: A Phragmén-Lindelöf alternative for a class of second order quasilinear equations in $\Bbb R^3$.Acta Math. Sci. 16 (1996), 181-191. Zbl 0866.35041, MR 1402960, 10.7153/mia-09-60
Reference: [25] Liu, Y.: Continuous dependence for a thermal convection model with temperature-depen-dent solubility.Appl. Math. Comput. 308 (2017), 18-30. Zbl 1411.35228, MR 3638153, 10.1016/j.amc.2017.03.004
Reference: [26] Liu, Y., Lin, C.: Phragmén-Lindelöf type alternative results for the Stokes flow equation.Math. Inequal. Appl. 9 (2006), 671-694. Zbl 1116.35021, MR 2268176, 10.7153/mia-09-60
Reference: [27] Liu, Y., Lin, Y., Li, Y.: Convergence result for the thermoelasticity of type III.Appl. Math. Lett. 26 (2013), 97-102. Zbl 1252.74014, MR 2971407, 10.1016/j.aml.2012.04.001
Reference: [28] Liu, Y., Qin, X., Shi, J., Zhi, W.: Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $\Bbb R^2$.Appl. Math. Comput. 411 (2021), Article ID 126488, 10 pages. Zbl 07426871, MR 4284432, 10.1016/j.amc.2021.126488
Reference: [29] Liu, Y., Xiao, S., Lin, Y.: Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain.Math. Comput. Simul. 150 (2018), 66-82. Zbl 07316235, MR 3783079, 10.1016/j.matcom.2018.02.009
Reference: [30] Liverani, L., Quintanilla, R.: Thermoelasticity with temperature and microtemperatures with fading memory.(to appear) in Math. Mech. Solids. MR 4574895, 10.1177/10812865221115359
Reference: [31] Néel, M.-C.: Convection forcée en milieu poreux: Écarts à la loi de Darcy.C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 326 (1998), 615-620 French. Zbl 0915.76086, 10.1016/S1251-8069(98)89004-0
Reference: [32] Payne, L. E., Schaefer, P. W.: Some Phragmén-Lindelöf type results for the biharmonic equation.Z. Angew. Math. Phys. 45 (1994), 414-432. Zbl 0810.31001, MR 1278684, 10.1007/BF00945929
Reference: [33] Payne, L. E., Song, J. C.: Spatial decay bounds for the Forchheimer equations.Int. J. Eng. Sci. 40 (2002), 943-956. Zbl 1211.76119, 10.1016/S0020-7225(01)00102-1
Reference: [34] Payne, L. E., Straughan, B.: Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions.J. Math. Pures Appl., IX. Sér. 77 (1998), 317-354. Zbl 0906.35067, MR 1623387, 10.1016/S0021-7824(98)80102-5
Reference: [35] Payne, L. E., Straughan, B.: Convergence and continuous dependence for the Brink-man-Forchheimer equations.Stud. Appl. Math. 102 (1999), 419-439. Zbl 1136.76448, MR 1684989, 10.1111/1467-9590.00116
Reference: [36] Payne, L. E., Straughan, B.: Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium.Stud. Appl. Math. 105 (2000), 59-81. Zbl 1136.35318, MR 1856630, 10.1111/1467-9590.00142
Reference: [37] Quintanilla, R.: Some remarks on the fast spatial growth/decay in exterior regions.Z. Angew. Math. Phys. 70 (2019), Article ID 83, 18 pages. Zbl 1415.35070, MR 3948948, 10.1007/s00033-019-1127-x
Reference: [38] Quintanilla, R., Racke, R.: Spatial behavior in phase-lag heat conduction.Differ. Integral Equ. 28 (2015), 291-308. Zbl 1363.35236, MR 3306564
Reference: [39] Shi, J., Liu, Y.: Structural stability for the Forchheimer equations interfacing with a Darcy fluid in a bounded region in $\Bbb R^3$.Bound. Value Probl. 2021 (2021), Article ID 46, 22 pages. Zbl 07509890, MR 4252231, 10.1186/s13661-021-01525-6
Reference: [40] Straughan, B.: The Energy Method, Stability, and Nonlinear Convection.Applied Mathematical Sciences 91. Springer, New York (2004). Zbl 1032.76001, MR 2003826, 10.1007/978-0-387-21740-6
Reference: [41] Straughan, B.: Continuous dependence on the heat source in resonant porous penetrative convection.Stud. Appl. Math. 127 (2011), 302-314. Zbl 1250.80001, MR 2852484, 10.1111/j.1467-9590.2011.00521.x
Reference: [42] Straughan, B.: Effect of anisotropy and boundary conditions on Darcy and Brinkman porous penetrative convection.Environmental Fluid Mech. 22 (2022), 1233-1252. 10.1007/s10652-022-09888-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo