Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Hamilton-Jacobi equations; WENO scheme; adaptive WENO scheme; nonconvex Hamiltonian; convergence
Summary:
We study high-order numerical methods for solving Hamilton-Jacobi equations. Firstly, by introducing new clear concise nonlinear weights and improving their convex combination, we develop WENO schemes of Zhu and Qiu (2017). Secondly, we give an algorithm of constructing a convergent adaptive WENO scheme by applying the simple adaptive step on the proposed WENO scheme, which is based on the introduction of a new singularity indicator. Through detailed numerical experiments on extensive problems including nonconvex ones, the convergence and effectiveness of the adaptive WENO scheme are demonstrated.
References:
[1] Abgrall, R.: Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations. SIAM J. Sci. Comput. 31 (2009), 2419-2446. DOI 10.1137/040615997 | MR 2520283 | Zbl 1197.65167
[2] Amat, S., Ruiz, J., Shu, C.-W.: On new strategies to control the accuracy of WENO algorithms close to discontinuities. SIAM J. Numer. Anal. 57 (2019), 1205-1237. DOI 10.1137/18M1214937 | MR 3956155 | Zbl 1436.65095
[3] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38 (2016), A171--A195. DOI 10.1137/140998482 | MR 3449908 | Zbl 1407.65093
[4] Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41 (2003), 1339-1369. DOI 10.1137/S0036142902408404 | MR 2034884 | Zbl 1050.65076
[5] Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005), 1071-1091. DOI 10.1137/040608787 | MR 2199921 | Zbl 1105.65090
[6] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43 (1984), 1-19. DOI 10.2307/2007396 | MR 0744921 | Zbl 0556.65076
[7] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001), 89-112. DOI 10.1137/S003614450036757X | MR 1854647 | Zbl 0967.65098
[8] Henrick, A. K., Aslam, T. D., Powers, J. M.: Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points. J. Comput. Phys. 207 (2005), 542-567. DOI 10.1016/j.jcp.2005.01.023 | Zbl 1072.65114
[9] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation. Appl. Math. Comput. 290 (2016), 21-32. DOI 10.1016/j.amc.2016.05.022 | MR 3523409 | Zbl 1410.65313
[10] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2000), 2126-2143. DOI 10.1137/S106482759732455X | MR 1762034 | Zbl 0957.35014
[11] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996), 202-228. DOI 10.1006/jcph.1996.0130 | MR 1391627 | Zbl 0877.65065
[12] Kim, K., Hong, U., Ri, K., Yu, J.: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Appl. Math., Praha 66 (2021), 599-617. DOI 10.21136/AM.2021.0368-19 | MR 4283305 | Zbl 07396169
[13] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations. J. Sci. Comput. 65 (2015), 110-137. DOI 10.1007/s10915-014-9955-5 | MR 3394440 | Zbl 1408.65053
[14] Kurganov, A., Petrova, G.: Adaptive central-upwind schemes for Hamilton-Jacobi equations with nonconvex Hamiltonians. J. Sci. Comput. 27 (2006), 323-333. DOI 10.1007/s10915-005-9033-0 | MR 2285784 | Zbl 1115.65093
[15] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 28 (2006), 2229-2247. DOI 10.1137/040612002 | MR 2272259 | Zbl 1126.65075
[16] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1994), 200-212. DOI 10.1006/jcph.1994.1187 | MR 1300340 | Zbl 0811.65076
[17] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes. J. Comput. Phys. 284 (2015), 367-388. DOI 10.1016/j.jcp.2014.12.039 | MR 3303624 | Zbl 1352.65422
[18] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991), 907-922. DOI 10.1137/0728049 | MR 1111446 | Zbl 0736.65066
[19] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws. SIAM J. Sci. Comput. 31 (2008), 584-607. DOI 10.1137/070687487 | MR 2460790 | Zbl 1186.65123
[20] Qiu, J.-X., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations. J. Comput. Phys. 204 (2005), 82-99. DOI 10.1016/j.jcp.2004.10.003 | MR 2121905 | Zbl 1070.65078
[21] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (2009), 82-126. DOI 10.1137/070679065 | MR 2481112 | Zbl 1160.65330
[22] Xu, Z., Shu, C.-W.: Anti-diffusive high order WENO schemes for Hamilton-Jacobi equations. Methods Appl. Anal. 12 (2005), 169-190. DOI 10.4310/MAA.2005.v12.n2.a6 | MR 2257526 | Zbl 1119.65378
[23] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24 (2003), 1005-1030. DOI 10.1137/S1064827501396798 | MR 1950522 | Zbl 1034.65051
[24] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes. J. Comput. Phys. 254 (2013), 76-92. DOI 10.1016/j.jcp.2013.07.030 | MR 3143358 | Zbl 1349.65364
[25] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318 (2016), 110-121. DOI 10.1016/j.jcp.2016.05.010 | MR 3503990 | Zbl 1349.65365
[26] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations. Numer. Methods Partial Differ. Equations 33 (2017), 1095-1113. DOI 10.1002/num.22133 | MR 3652179 | Zbl 1371.65089
Partner of
EuDML logo