[1] Abgrall, R.:
Construction of simple, stable, and convergent high order schemes for steady first order Hamilton-Jacobi equations. SIAM J. Sci. Comput. 31 (2009), 2419-2446.
DOI 10.1137/040615997 |
MR 2520283 |
Zbl 1197.65167
[3] Bokanowski, O., Falcone, M., Sahu, S.:
An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations. SIAM J. Sci. Comput. 38 (2016), A171--A195.
DOI 10.1137/140998482 |
MR 3449908 |
Zbl 1407.65093
[5] Carlini, E., Ferretti, R., Russo, G.:
A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005), 1071-1091.
DOI 10.1137/040608787 |
MR 2199921 |
Zbl 1105.65090
[8] Henrick, A. K., Aslam, T. D., Powers, J. M.:
Mapped weighted essentially non-oscillarotry schemes: Achieving optimal order near critical points. J. Comput. Phys. 207 (2005), 542-567.
DOI 10.1016/j.jcp.2005.01.023 |
Zbl 1072.65114
[12] Kim, K., Hong, U., Ri, K., Yu, J.:
Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes. Appl. Math., Praha 66 (2021), 599-617.
DOI 10.21136/AM.2021.0368-19 |
MR 4283305 |
Zbl 07396169
[19] Qiu, J.-M., Shu, C.-W.:
Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws. SIAM J. Sci. Comput. 31 (2008), 584-607.
DOI 10.1137/070687487 |
MR 2460790 |
Zbl 1186.65123