[1] Axiotis, K., Sviridenko, M.:
Sparse convex optimization via adaptively regularized hard thresholding. J. Mach. Learn. Res. 22 (2021), Article ID 122, 47 pages.
MR 4279773 |
Zbl 07370639
[3] Besson, A., Perdios, D., Wiaux, Y., Thiran, J.-P.:
Joint sparsity with partially known support and application to ultrasound imaging. IEEE Signal Process. Lett. 26 (2019), 84-88.
DOI 10.110/LSP.2018.2880571
[6] Blumensath, T., Davies, M. E.:
Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Selected Topics Signal Process. 4 (2010), 298-309.
DOI 10.1109/JSTSP.2010.2042411
[8] Carrillo, R. E., Polania, L. F., Barner, K. E.:
Iterative algorithms for compressed sensing with partially known support. IEEE International Conference on Acoustics, Speech and Signal Processing IEEE, Los Alamitos (2010), 3654-3657.
DOI 10.1109/ICASSP.2010.5495901
[9] Carrillo, R. E., Polania, L. F., Barner, K. E.:
Iterative hard thresholding for compressed sensing with partially known support. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE, Los Alamitos (2011), 4028-4031.
DOI 10.1109/ICASSP.2011.5947236
[16] Khajehnejad, M. A., Xu, W., Avestimehr, A. S., Hassibi, B.:
Weighted $\ell_1$ minimization for sparse recovery with prior information. IEEE International Symposium on Information Theory IEEE, Los Alamitos (2009), 483-487.
DOI 10.1109ISIT.2009.5205716 |
MR 2816477
[17] Khera, S., Singh, S.:
Estimation of channel for millimeter-wave hybrid massive MIMO systems using Orthogonal Matching Pursuit (OMP). J. Phys., Conf. Ser. 2327 (2022), Article ID 012040, 9 pages.
DOI 10.1088/1742-6596/2327/1/012040
[18] Li, Y., Lin, C., Zhang, W.:
Improved sparse least-squares support vector machine classifiers. Neurocomputing 69 (2006), 1655-1658.
DOI 10.1016/j.neucom.2006.03.001
[21] Shao, Y.-H., Li, C.-N., Liu, M.-Z., Wang, Z., Deng, N.-Y.:
Sparse $L_q$-norm least squares support vector machine with feature selection. Pattern Recognition 78 (2018), 167-181.
DOI 10.1016/j.patcog.2018.01.016 |
MR 3621691
[22] Shen, J., Li, P.:
A tight bound of hard thresholding. J. Mach. Learn. Res. 18 (2018), Article ID 208, 42 pages.
MR 3827096 |
Zbl 1473.62287
[23] Suykens, J. A. K., Lukas, L., Vandewalle, J.:
Sparse approximation using least squares support vector machines. IEEE International Symposium on Circuits and Systems (ISCAS). Vol. 2 IEEE, Los Alamitos (2000), 757-760.
DOI 10.1109/ISCAS.2000.856439
[25] Borries, R. von, Miosso, C. J., Potes, C.:
Compressed sensing using prior information. International Workshop on Computational Advances in Multi-Sensor Adaptive Processing IEEE, Los Alamitos (2007), 121-124.
DOI 10.1109/CAMSAP.2007.4497980
[26] Wang, X.-Z., Xing, H.-J., Li, Y., Hua, Q., Dong, C.-R., Pedrycz, W.:
A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans. Fuzzy Syst. 23 (2015), 1638-1654.
DOI 10.1109/TFUZZ.2014.2371479
[27] Yang, J., Bouzerdoum, A., Phung, S. L.:
A training algorithm for sparse LS-SVM using compressive sampling. IEEE International Conference on Acoustics, Speech and Signal Processing IEEE, Los Alamitos (2010), 2054-2057.
DOI 10.1109/ICASSP.2010.5495015 |
MR 0642901
[28] Yang, J., Ma, J.:
A sparsity-based training algorithm for Least Squares SVM. IEEE Symposium on Computational Intelligence and Data Mining (CIDM) IEEE, Los Alamitos (2014), 345-350.
DOI 10.1109/CIDM.2014.7008688
[30] Zhang, X., Xu, W., Cui, Y., Lu, L., Lin, J.:
On recovery of block sparse signals via block compressive sampling matching pursuit. IEEE Access 7 (2019), 175554-175563.
DOI 10.1109/ACCESS.2019.2955759