[7] Desjardins, B., Bris, C. Le:
Remarks on a nonhomogeneous model of magnetohydrodynamics. Differ. Integral Equ. 11 (1998), 377-394.
MR 1745545 |
Zbl 1067.76097
[9] Gerbeau, J.-F., Bris, C. Le:
Existence of solution for a density-dependent magnetohydrodynamic equation. Adv. Differ. Equ. 2 (1997), 427-452.
MR 1441851 |
Zbl 1023.35524
[10] Giga, M.-H., Giga, Y., Saal, J.:
Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions. Progress in Nonlinear Differential Equations and their Applications 79. Birkhäuser, Basel (2010).
DOI 10.1007/978-0-8176-4651-6 |
MR 2656972 |
Zbl 1215.35001
[12] He, C., Li, J., Lü, B.:
Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains. Arch. Ration. Mech. Anal. 239 (2021), 1809-1835.
DOI 10.1007/s00205-020-01604-5 |
MR 4215202 |
Zbl 1462.35243
[17] Lions, P.-L.:
Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications 3. Oxford University Press, Oxford (1996).
MR 1422251 |
Zbl 0866.76002
[20] Wang, W., Yu, H., Zhang, P.:
Global strong solutions for 3D viscous incompressible heat conducting Navier-Stokes flows with the general external force. Math. Methods Appl. Sci. 41 (2018), 4589-4601.
DOI 10.1002/mma.4915 |
MR 3828345 |
Zbl 1397.35231
[24] Zhong, X.:
Global well-posedness to the 2D Cauchy problem of nonhomogeneous heat conducting magnetohydrodynamic equations with large initial data and vacuum. Calc. Var. Partial Differ. Equ. 60 (2021), Article ID 64, 24 pages.
DOI 10.1007/s00526-021-01957-z |
MR 4239818 |
Zbl 1461.76571
[25] Zhong, X.:
Global existence and large time behavior of strong solutions to the nonhomogeneous heat conducting magnetohydrodynamic equations with large initial data and vacuum. Anal. Appl., Singap. 20 (2022), 193-219.
DOI 10.1142/S0219530521500056 |
MR 4386926 |
Zbl 1490.76251
[26] Zhong, X.:
Global well-posedness and exponential decay of 2D nonhomogeneous Navier-Stokes and magnetohydrodynamic equations with density-dependent viscosity and vacuum. J. Geom. Anal. 32 (2022), Article ID 19, 26 pages.
DOI 10.1007/s12220-021-00754-6 |
MR 4349463 |
Zbl 1480.76101
[27] Zhou, L.:
Serrin-type blowup criterion of three-dimensional nonhomogeneous heat conducting magnetohydrodynamic flows with vacuum. Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 81, 16 pages.
DOI 10.14232/ejqtde.2019.1.81 |
MR 4028913 |
Zbl 1449.35358