Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
diffraction tomography; tensor Green's function; Born approximation; Fourier transform; inverse scattering
Summary:
The paper is devoted to the electromagnetic inverse scattering problem for a dielectric anisotropic and magnetically isotropic media. The properties of an anisotropic medium with respect to electromagnetic waves are defined by the tensors, which give the relation between the inductions and the fields. The tensor Fourier diffraction theorem derived in the paper can be considered a useful tool for studying tensor fields in inverse problems of electromagnetic scattering. The method is based on the first Born approximation.
References:
[1] Abhishek, A.: Support theorems for the transverse ray transform of tensor fields of rank $m$. J. Math. Anal. Appl. 485 (2020), Article ID 123828, 13 pages. DOI 10.1016/j.jmaa.2019.123828 | MR 4050692 | Zbl 1444.53050
[2] Boerner, W.-M., (Eds.), H. Überall: Radar Target Imaging. Springer Series on Wave Phenomena 13. Springer, New York (1994). DOI 10.1007/978-3-642-85112-4 | Zbl 0807.65132
[3] Carney, P. S., Schotland, J. C.: Near-field tomography. Inside Out: Inverse Problems and Applications Cambridge University Press, Cambridge (2003), 133-166. MR 2029680 | Zbl 1081.78012
[4] Chew, W. C.: Waves and Fields in Inhomogeneous Media. IEEE/OUP Series on Electromagnetic Wave Theory. IEEE Press, New York (1990). Zbl 0925.78002
[5] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences 93. Springer, Berlin (1992). DOI 10.1007/978-1-4614-4942-3 | MR 1183732 | Zbl 0760.35053
[6] Devaney, A. J.: Geophysical diffraction tomography. IEEE Trans. Geosci. Remote Sensing GE-22 (1984), 3-13. DOI 10.1109/TGRS.1984.350573 | MR 0804623
[7] Devaney, A. J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion. Cambridge University Press, Cambridge (2012). MR 2975719 | Zbl 1259.65140
[8] Farhat, N.: Microwave holography and coherent tomography. Medical Applications of Microwave Imaging IEEE Press, New York (1986), 66-81.
[9] Girard, C., Dereux, A.: Near-field optics theories. Rep. Progr. Phys. 59 (1996), 657-699. DOI 10.1088/0034-4885/59/5/002
[10] Gullberg, G. T., Roy, D. G., Zeng, G. L., Alexander, A. L., Parker, D. L.: Tensor tomography. IEEE Trans. Nucl. Sci. 46 (1999), 991-1000. DOI 10.1109/23.790810
[11] Hansen, T. B., Yaghjian, A. D.: Plane-Wave Theory of Time-Domain Fields: Near-Field Scanning Applications. IEEE Press, New York (1999). MR 1767418 | Zbl 1008.78501
[12] Kak, A. C., Slaney, M.: Principles of Computerized Tomographic Imaging. Classics in Applied Mathematics 33. SIAM, Philadelphia (2001). DOI 10.1137/1.9780898719277 | MR 1850949 | Zbl 0984.92017
[13] Lionheart, W. R. B., Withers, P. J.: Diffraction tomography of strain. Inverse Probl. 31 (2015), Article ID 045005, 17 pages. DOI 10.1088/0266-5611/31/4/045005 | MR 3333716 | Zbl 1331.49050
[14] Mishchenko, M. I., Travis, L. D., Lacis, A. A.: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002).
[15] Morse, P. M., Feshbach, H.: Methods of Theoretical Physics. Vol. I, II. McGraw-Hill, New York (1953). MR 0059774 | Zbl 0051.40603
[16] Mueller, R. K., Kaveh, M., Wade, G.: Reconstructive tomography and applications to ultrasonics. Proc. IEEE 67 (1979), 567-587. DOI 10.1109/PROC.1979.11284
[17] Nikolova, N. K.: Microwave Biomedical Imaging. Cambridge University Press, New York (2014). DOI 10.1002/047134608X.W8214
[18] Sharafutdinov, V. A.: Integral Geometry of Tensor Fields. Inverse and Ill-posed Problems Series 1. VSP, Utrecht (1994). DOI 10.1515/9783110900095 | MR 1374572 | Zbl 0883.53004
[19] Tai, C. T.: Dyadic Green Functions in Electromagnetic Theory. IEEE Press, New York (1994). MR 1420621 | Zbl 0913.73002
[20] Watanabe, K.: Integral Transform Techniques for Green's Function. Lecture Notes in Applied and Computational Mechanics 71. Springer, Cham (2014). DOI 10.1007/978-3-319-00879-0 | MR 3100154 | Zbl 1320.74003
[21] Wolf, E.: Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Commun. 1 (1969), 153-156. DOI 10.1016/0030-4018(69)90052-2
[22] Wolf, E.: Principles and development of diffraction tomography. Trends in Optics Research, Developments and Applications. Academic Press, New York (1996), 83-110. DOI 10.1016/B978-012186030-1/50007-2
[23] Yaghjian, A. D.: Electric dyadic Green's functions in the source region. Proc. IEEE 68 (1980), 248-263. DOI 10.1109/PROC.1980.11620
[24] Zhang, T., Kan, L., Godavarthi, C., Ruan, Y.: Tomographic diffractive microscopy: A review of methods and recent developments. Appl. Sci. 9 (2019), 3834-3852. DOI 10.3390/app9183834
[25] Zhao, D., Wang, T.: Direct and inverse problems in the theory of light scattering. Progress in Optics Elsevier, Amsterdam (2012), 261-308. DOI 10.1016/B978-0-44-459422-8.00005-9
[26] Zoughi, R.: Microwave Non-Destructive Testing and Evaluation Principles. Non-Destructive Evaluation Series 4. Springer, Dordrecht (2000). DOI 10.1007/978-94-015-1303-6
Partner of
EuDML logo