[6] Ducomet, B., Nečasová, Š.:
Global existence of solutions for the one-dimensional motions of a compressible viscous gas with radiation: An ``infrarelativistic model''. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 3258-3274.
DOI 10.1016/j.na.2009.12.005 |
MR 2587361 |
Zbl 1185.35158
[7] Ducomet, B., Nečasová, Š.:
Global weak solutions to the 1D compressible Navier-Stokes equations with radiation. Commun. Math. Anal. 8 (2010), 23-65.
MR 2738332 |
Zbl 1194.35305
[9] Ducomet, B., Nečasová, Š.:
Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: The pure scattering case. Anal. Appl., Singap. 11 (2013), Article ID 1350003, 29 pages.
DOI 10.1142/S0219530513500036 |
MR 3019508 |
Zbl 1261.35102
[14] Hong, H., Wang, T.:
Stability of stationary solutions to the inflow problem for full compressible Navier-Stokes equations with a large initial perturbation. SIAM J. Math. Anal. 49 (2017), 2138-2166.
DOI 10.1137/16M108536X |
MR 3664215 |
Zbl 1371.35196
[16] Jiang, P.:
Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete Contin. Dyn. Syst. 37 (2017), 2045-2063.
DOI 10.3934/dcds.2017087 |
MR 3640587 |
Zbl 1360.76222
[18] Jiang, S., Ju, Q., Liao, Y.:
Nonequilibrium-diffusion limit of the compressible Euler-P$_1$ approximation radiation model at low Mach number. SIAM J. Math. Anal. 53 (2021), 2491-2522.
DOI 10.1137/20M1344342 |
MR 4249060 |
Zbl 1464.35183
[19] Jiang, S., Li, F., Xie, F.:
Nonrelativistic limit of the compressible Navier-Stokes-Fourier-P$_1$ approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal. 47 (2015), 3726-3746.
DOI 10.1137/140987596 |
MR 3403137 |
Zbl 1331.35262
[20] Jiang, S., Xie, F., Zhang, J. W.:
A global existence result in radiation hydrodynamics. Industrial and Applied Mathematics in China Series in Contemporary Applied Mathematics 10. World Scientific, Hackensack (2009), 25-48.
MR 2548855 |
Zbl 1423.76384
[31] Nirenberg, L.:
On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162.
MR 0109940 |
Zbl 0088.07601
[32] Pomraning, G. C.: The Equations of Radiation Hydrodynamics. Pergamon Press, Elmsford (1973).
[35] Qin, Y., Feng, B., Zhang, M.:
Large-time behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation. J. Differ. Equations 252 (2012), 6175-6213.
DOI 10.1016/j.jde.2012.02.022 |
MR 2911831 |
Zbl 1366.76102
[36] Rohde, C., Wang, W., Xie, F.:
Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: Superposition of rarefaction and contact waves. Commun. Pure Appl. Anal. 12 (2013), 2145-2171.
DOI 10.3934/cpaa.2013.12.2145 |
MR 3015674 |
Zbl 1282.35314
[44] Wang, J., Xie, F.:
Asymptotic stability of viscous contact wave for the one-dimensional compressible viscous gas with radiation. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 4138-4151.
DOI 10.1016/j.na.2011.03.047 |
MR 2802993 |
Zbl 1221.35288