Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
radiation hydrodynamics; Navier-Stokes system with radiation; existence; convergence rate
Summary:
This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in $[0,\infty )$, provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.
References:
[1] Chen, Z., Chai, X., Wang, W.: Convergence rate of solutions to strong contact discontinuity for the one-dimensional compressible radiation hydrodynamics model. Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 265-282. DOI 10.1016/S0252-9602(15)30094-1 | MR 3432764 | Zbl 1363.35243
[2] Choe, K.-I., Hong, H., Kim, J.: Non-degenerate stationary solution for outflow problem on the 1-D viscous heat-conducting gas with radiation. Commun. Math. Sci. 18 (2020), 1661-1684. DOI 10.4310/CMS.2020.v18.n6.a7 | MR 4176354 | Zbl 1467.35237
[3] Danchin, R., Ducomet, B.: On a simplified model for radiating flows. J. Evol. Equ. 14 (2014), 155-195. DOI 10.1007/s00028-013-0211-5 | MR 3169034 | Zbl 1302.35313
[4] Danchin, R., Ducomet, B.: Existence of strong solutions with critical regularity to a polytropic model for radiating flows. Ann. Mat. Pura Appl. (4) 196 (2017), 107-153. DOI 10.1007/s10231-016-0566-7 | MR 3600861 | Zbl 1369.35055
[5] Ducomet, B., Feireisl, E., Nečasová, Š.: On a model in radiation hydrodynamics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 797-812. DOI 10.1016/J.ANIHPC.2011.06.002 | MR 2859928 | Zbl 1328.76074
[6] Ducomet, B., Nečasová, Š.: Global existence of solutions for the one-dimensional motions of a compressible viscous gas with radiation: An ``infrarelativistic model''. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 3258-3274. DOI 10.1016/j.na.2009.12.005 | MR 2587361 | Zbl 1185.35158
[7] Ducomet, B., Nečasová, Š.: Global weak solutions to the 1D compressible Navier-Stokes equations with radiation. Commun. Math. Anal. 8 (2010), 23-65. MR 2738332 | Zbl 1194.35305
[8] Ducomet, B., Nečasová, Š.: Large-time behavior of the motion of a viscous heat-conducting one dimensional gas coupled to radiation. Ann. Mat. Pura Appl. (4) 191 (2012), 219-260. DOI 10.1007/s10231-010-0180-z | MR 2909797 | Zbl 1238.35085
[9] Ducomet, B., Nečasová, Š.: Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: The pure scattering case. Anal. Appl., Singap. 11 (2013), Article ID 1350003, 29 pages. DOI 10.1142/S0219530513500036 | MR 3019508 | Zbl 1261.35102
[10] Ducomet, B., Nečasová, Š.: Global existence for weak solutions of the Cauchy problem in a model of radiation hydrodynamics. J. Math. Anal. Appl. 420 (2014), 464-482. DOI 10.1016/j.jmaa.2014.05.043 | MR 3229835 | Zbl 1296.35140
[11] Gao, J., Tao, Q., Yao, Z.-A.: Long-time behavior of solution for the compressible nematic liquid crystal flows in $\Bbb{R}^3$. J. Differ. Equations 261 (2016), 2334-2383. DOI 10.1016/j.jde.2016.04.033 | MR 3505193 | Zbl 1347.35200
[12] Guo, Y., Wang, Y.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equations 37 (2012), 2165-2208. DOI 10.1080/03605302.2012.696296 | MR 3005540 | Zbl 1258.35157
[13] Hong, H.: Asymptotic behavior toward the combination of contact discontinuity with rarefaction waves for 1-D compressible viscous gas with radiation. Nonlinear Anal., Real World Appl. 35 (2017), 175-199. DOI 10.1016/j.nonrwa.2016.07.005 | MR 3595322 | Zbl 1356.35047
[14] Hong, H., Wang, T.: Stability of stationary solutions to the inflow problem for full compressible Navier-Stokes equations with a large initial perturbation. SIAM J. Math. Anal. 49 (2017), 2138-2166. DOI 10.1137/16M108536X | MR 3664215 | Zbl 1371.35196
[15] Jiang, P.: Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete Contin. Dyn. Syst. 35 (2015), 3015-3037. DOI 10.3934/dcds.2015.35.3015 | MR 3343552 | Zbl 1332.76046
[16] Jiang, P.: Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete Contin. Dyn. Syst. 37 (2017), 2045-2063. DOI 10.3934/dcds.2017087 | MR 3640587 | Zbl 1360.76222
[17] Jiang, P.: Unique global solution to the thermally radiative magnetohydrodynamics equations. Z. Angew. Math. Phys. 69 (2018), Article ID 96, 29 pages. DOI 10.1007/s00033-018-0991-0 | MR 3817778 | Zbl 1404.35358
[18] Jiang, S., Ju, Q., Liao, Y.: Nonequilibrium-diffusion limit of the compressible Euler-P$_1$ approximation radiation model at low Mach number. SIAM J. Math. Anal. 53 (2021), 2491-2522. DOI 10.1137/20M1344342 | MR 4249060 | Zbl 1464.35183
[19] Jiang, S., Li, F., Xie, F.: Nonrelativistic limit of the compressible Navier-Stokes-Fourier-P$_1$ approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal. 47 (2015), 3726-3746. DOI 10.1137/140987596 | MR 3403137 | Zbl 1331.35262
[20] Jiang, S., Xie, F., Zhang, J. W.: A global existence result in radiation hydrodynamics. Industrial and Applied Mathematics in China Series in Contemporary Applied Mathematics 10. World Scientific, Hackensack (2009), 25-48. MR 2548855 | Zbl 1423.76384
[21] Jiang, P., Yu, F.: Global well posedness for the thermally radiative magnetohydrodynamic equations in 3D. J. Funct. Spaces 2020 (2020), Article ID 4748101, 11 pages. DOI 10.1155/2020/4748101 | MR 4124574 | Zbl 1448.35396
[22] Jiang, P., Zhou, Y.: Smooth solutions to diffusion approximation radiation hydrodynamics equations. J. Math. Anal. Appl. 466 (2018), 324-337. DOI 10.1016/j.jmaa.2018.05.071 | MR 3818119 | Zbl 1391.35174
[23] Lattanzio, C., Mascia, C., Serre, D.: Shock waves for radiative hyperbolic-elliptic systems. Indiana Univ. Math. J. 56 (2007), 2601-2640. DOI 10.1512/iumj.2007.56.3043 | MR 2360621 | Zbl 1132.35062
[24] Li, Y., Zhu, S.: Formation of singularities in solutions to the compressible radiation hydrodynamics equations with vacuum. J. Differ. Equations 256 (2014), 3943-3980. DOI 10.1016/j.jde.2014.03.007 | MR 3190488 | Zbl 1290.35008
[25] Li, Y., Zhu, S.: Existence results for compressible radiation hydrodynamic equations with vacuum. Commun. Pure Appl. Anal. 14 (2015), 1023-1052. DOI 10.3934/cpaa.2015.14.1023 | MR 3320164 | Zbl 1314.35103
[26] Li, Y., Zhu, S.: Existence results and blow-up criterion of compressible radiation hydrodynamic equations. J. Dyn. Differ. Equations 29 (2017), 549-595. DOI 10.1007/s10884-015-9455-9 | MR 3651601 | Zbl 1378.35244
[27] Lin, C.: Asymptotic stability of rarefaction waves in radiative hydrodynamics. Commun. Math. Sci. 9 (2011), 207-223. DOI 10.4310/CMS.2011.v9.n1.a10 | MR 2836843 | Zbl 1282.35070
[28] Lin, C., Coulombel, J.-F., Goudon, T.: Shock profiles for non-equilibrium radiating gases. Physica D 218 (2006), 83-94. DOI 10.1016/j.physd.2006.04.012 | MR 2234210 | Zbl 1096.35086
[29] Lin, C., Coulombel, J.-F., Goudon, T.: Asymptotic stability of shock profiles in radiative hydrodynamics. C. R., Math., Acad. Sci. Paris 345 (2007), 625-628. DOI 10.1016/j.crma.2007.10.029 | MR 2371479 | Zbl 1387.35497
[30] Nguyen, T., Plaza, R. G., Zumbrun, K.: Stability of radiative shock profiles for hyperbolic-elliptic coupled systems. Physica D 239 (2010), 428-453. DOI 10.1016/j.physd.2010.01.011 | MR 2593039 | Zbl 1195.37045
[31] Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. MR 0109940 | Zbl 0088.07601
[32] Pomraning, G. C.: The Equations of Radiation Hydrodynamics. Pergamon Press, Elmsford (1973).
[33] Pu, X., Guo, B.: Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinet. Relat. Models 9 (2016), 165-191. DOI 10.3934/krm.2016.9.165 | MR 3422649 | Zbl 1330.35339
[34] Pu, X., Xu, X.: Asymptotic behaviors of the full quantum hydrodynamic equations. J. Math. Anal. Appl. 454 (2017), 219-245. DOI 10.1016/j.jmaa.2017.04.053 | MR 3649851 | Zbl 1369.35067
[35] Qin, Y., Feng, B., Zhang, M.: Large-time behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation. J. Differ. Equations 252 (2012), 6175-6213. DOI 10.1016/j.jde.2012.02.022 | MR 2911831 | Zbl 1366.76102
[36] Rohde, C., Wang, W., Xie, F.: Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: Superposition of rarefaction and contact waves. Commun. Pure Appl. Anal. 12 (2013), 2145-2171. DOI 10.3934/cpaa.2013.12.2145 | MR 3015674 | Zbl 1282.35314
[37] Rohde, C., Xie, F.: Decay rates to viscous contact waves for a 1D compressible radiation hydrodynamics model. Math. Models Methods Appl. Sci. 23 (2013), 441-469. DOI 10.1142/S0218202512500522 | MR 3010836 | Zbl 1270.35112
[38] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). DOI 10.1515/9781400883882 | MR 0290095 | Zbl 0207.13501
[39] Tan, Z., Zhang, R.: Optimal decay rates of the compressible fluid models of Korteweg type. Z. Angew. Math. Phys. 65 (2014), 279-300. DOI 10.1007/s00033-013-0331-3 | MR 3187946 | Zbl 1292.35052
[40] Wang, Y.: Decay of the Navier-Stokes-Poisson equations. J. Differ. Equations 253 (2012), 273-297. DOI 10.1016/j.jde.2012.03.006 | MR 2917409 | Zbl 1239.35117
[41] Wang, Z.: Vanishing viscosity limit of the radiation hydrodynamic equations with far field vacuum. J. Math. Anal. Appl. 452 (2017), 747-779. DOI 10.1016/j.jmaa.2017.03.024 | MR 3632673 | Zbl 1367.35131
[42] Wang, Z.: Existence results for the radiation hydrodynamic equations with degenerate viscosity coefficients and vacuum. J. Differ. Equations 265 (2018), 354-388. DOI 10.1016/j.jde.2018.02.035 | MR 3782547 | Zbl 1391.35311
[43] Wang, J., Xie, F.: Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system. J. Differ. Equations 251 (2011), 1030-1055. DOI 10.1016/j.jde.2011.03.011 | MR 2812581 | Zbl 1228.35047
[44] Wang, J., Xie, F.: Asymptotic stability of viscous contact wave for the one-dimensional compressible viscous gas with radiation. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 4138-4151. DOI 10.1016/j.na.2011.03.047 | MR 2802993 | Zbl 1221.35288
[45] Wang, J., Xie, F.: Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model. SIAM J. Math. Anal. 43 (2011), 1189-1204. DOI 10.1137/100792792 | MR 2800574 | Zbl 1228.35024
[46] Wang, W., Xie, F.: The initial value problem for a multi-dimensional radiation hydrodynamics model with viscosity. Math. Methods Appl. Sci. 34 (2011), 776-791. DOI 10.1002/mma.1398 | MR 2815767 | Zbl 1216.35099
[47] Wang, W., Xie, F., Yang, X.: Decay rates of solutions to a P1-approximation model arising from radiation hydrodynamics. J. Differ. Equations 264 (2018), 2936-2969. DOI 10.1016/j.jde.2017.11.007 | MR 3737859 | Zbl 1386.76141
[48] Xie, F.: Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 1075-1100. DOI 10.3934/dcdsb.2012.17.1075 | MR 2873128 | Zbl 1241.35015
Partner of
EuDML logo