Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
asymptotic smoothness in Banach space; universality; complexity
Summary:
For $1 < p \le \infty$, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case $p=\infty$.
References:
[1] Argyros S. A., Deliyanni I.: Examples of asymptotic $\ell_{1}$ Banach spaces. Trans. Amer. Math. Soc. 349 (1997), no. 3, 973–995. DOI 10.1090/S0002-9947-97-01774-1 | MR 1390965
[2] Bossard B.: Théorie descriptive des ensembles en géométrie des espaces de Banach. Thèse de doctorat de Mathématiques de l'Université Paris VI, Paris, 1994 (French).
[3] Bossard B.: A coding of separable Banach space. Analytic and coanalytic families of Banach spaces. Fund. Math. 172 (2002), no. 2, 117–151. DOI 10.4064/fm172-2-3 | MR 1899225
[4] Causey R. M.: Power type asymptotically uniformly smooth and asymptotically uniformly flat norms. Positivity 22 (2018), no. 5, 1197–1221. DOI 10.1007/s11117-018-0568-3 | MR 3863608
[5] Causey R. M., Navoyan K. V.: Factorization of Asplund operators. J. Math. Anal. Appl. 479 (2019), no. 1, 1324–1354. DOI 10.1016/j.jmaa.2019.06.081 | MR 3987087
[6] Dilworth S. J., Kutzarova D., Lancien G., Randrianarivony N. L.: Equivalent norms with the property $(\beta)$ of Rolewicz. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 1, 101–113. DOI 10.1007/s13398-016-0278-2 | MR 3596040
[7] Freeman D., Odell E., Schlumprecht Th., Zsák A.: Banach spaces of bounded Szlenk index. II. Fundam. Math. 205 (2009), no. 2, 162–177. MR 2545450
[8] Godefroy G.: The isomorphism classes of $l_p$ are Borel. Houston J. Math. 43 (2017), no. 3, 947–951. MR 3739042
[9] Godefroy G., Kalton N., Lancien G.: Subspaces of $c_0 (\mathbb{N})$ and Lipschitz isomorphisms. Geom. Funct. Anal. 10 (2000), no. 4, 798–820. DOI 10.1007/PL00001638 | MR 1791140
[10] Godefroy G., Saint-Raymond J.: Descriptive complexity of some isomorphism classes of Banach spaces. J. Funct. Anal. 275 (2018), no. 4, 1008–1022. DOI 10.1016/j.jfa.2018.01.018 | MR 3807784
[11] Johnson W. B., Lindenstrauss J., Preiss D., Schechtman G.: Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces. Proc. London Math. Soc. (3) 84 (2002), no. 3, 711–746. MR 1888429
[12] Johnson W. B., Zippin M.: Subspaces and quotient spaces of $(\sum G_n)_{l_p}$ and $(\sum G_n)_{c_0}$. Israel. J. Math. 17 (1974), 50–55. DOI 10.1007/BF02756824 | MR 0358296
[13] Kalton N. J., Werner D.: Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137–178. MR 1324212
[14] Kechris A. S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156, Springer, New York, 1995. MR 1321597 | Zbl 0819.04002
[15] Kurka O.: Tsirelson-like spaces and complexity of classes of Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 112 (2018), no. 4, 1101–1123. DOI 10.1007/s13398-017-0412-9 | MR 3857045
[16] Kurka O.: The isomorphism class of $c_0$ is not Borel. Israel J. Math. 231 (2019), no. 1, 243–268. DOI 10.1007/s11856-019-1851-0 | MR 3960007
[17] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer, Berlin, 1977. MR 0500056
[18] Odell E. W., Schlumprecht Th.: Embedding into Banach spaces with finite dimensional decompositions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 100 (2006), no. 1–2, 295–323. MR 2267413
[19] Prus S.: Nearly uniformly smooth Banach spaces. Boll. Un. Mat. Ital. B (7) 3 (1989), no. 3, 507–521. MR 1010520
[20] Schechtman G.: On Pelczyński's paper “Universal bases" (Studia Math. 32. (1969)), Israel. J. Math. 22 (1975), no. 3–4, 181–184. MR 0390730
Partner of
EuDML logo