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Universality, complexity and

asymptotically uniformly smooth Banach spaces

Ryan M. Causey, Gilles Lancien

Abstract. For 1 < p ≤ ∞, we show the existence of a Banach space which is both
injectively and surjectively universal for the class of all separable Banach spaces
with an equivalent p-asymptotically uniformly smooth norm. We prove that this
class is analytic complete in the class of separable Banach spaces. These results
extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case
p = ∞.
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Classification: 46B20, 46B03, 46B06

1. Introduction

The notion of asymptotic smoothness has become very important in the recent

developments of the geometry of Banach spaces. In this paper we study the

existence of universal spaces and the complexity, in the sense of descriptive set

theory, of a special class of asymptotically uniformly smooth Banach spaces. For

a given p ∈ (1,∞], we are interested in the class of separable Banach spaces that

admit an equivalent p-asymptotically uniformly smooth norm (we abbreviate p-

AUS). In fact, it is one of the main results from [4] that the existence of an

equivalent p-AUS norm is characterized by some lp upper estimates for weakly

null trees or in terms of a two player infinite asymptotic game. We denote this

property Tp as a reference to the lp tree upper estimates. In Section 2 we recall

these definitions and the main characterizations of Tp.

If we denote Sep the class of all separable Banach spaces, it is known that

T∞ ∩ Sep coincides with the class of all Banach spaces that are isomorphic to

a subspace of c0. This result was first explicitly proved in [9], but could be read-

ily extracted from ideas of N. J. Kalton and D. Werner in [13]. We also refer to

[11] for the optimal proof. One of the goals of this paper is to find a space in

Tp∩ Sep which is both injectively and surjectively universal for the class Tp∩ Sep,

with 1 < p ≤ ∞. This is achieved in Section 4, where we prove
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Theorem A. For any p ∈ (1,∞], there exists a space Up in Tp ∩ Sep such that

every Banach space in Tp∩ Sep is both isomorphic to a subspace and to a quotient

of Up.

We explain in Section 4 how this result can be deduced from previous works by

E. W. Odell and Th. Schlumprecht [18] and D. Freeman, E. Odell, Th. Schlump-

recht and A. Zsák [7]. However, we have chosen to explain the construction

through the use of “press down” norms associated with spaces with finite di-

mensional decompositions. All the necessary background on press down norms is

introduced in Section 3.

Finally, in Section 5, we address the question of the topological complexity of

the class Tp ∩ Sep. We first recall the framework [3] built by B. Bossard in which

this problem can be rigorously formulated. Again, the question was only open for

p ∈ (1,∞), as O. Kurka proved in [15] that the class of all Banach spaces that

linearly embed into c0 is analytic complete. We extend this result by showing the

following.

Theorem B. For any p ∈ (1,∞], the class Tp ∩ Sep is analytic complete. In

particular it is not Borel.

2. Main characterizations of p-AUS-able spaces

All Banach spaces are over the field K, which is either R or C. We denote BX

(SX , respectively) the closed unit ball (sphere, respectively) of a Banach space X .

By subspace, we shall always mean closed subspace. Unless otherwise specified,

all spaces are assumed to be infinite dimensional.

We start with the definition of the modulus of asymptotic uniform smoothness

of X . If X is infinite dimensional, for τ > 0, we define

̺X(τ) = sup
y∈BX

inf
E∈cof(X)

sup
x∈BE

‖y + τx‖ − 1,

where cof(X) denotes the set of finite codimensional subspaces of X . For the sake

of completeness, we define ̺X(τ) = 0 for all τ > 0, when X is finite dimensional.

We note that

̺X(τ) = sup
{

lim sup
λ

‖y + τxλ‖ − 1: (xλ) ⊂ BX is a weakly null net
}

.

We say X is asymptotically uniformly smooth (in short AUS) if

lim
τ→0+

̺X(τ)

τ
= 0.
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We say X is asymptotically uniformly smoothable (AUS-able) if X admits an

equivalent AUS norm. For p ∈ (1,∞), the norm ‖·‖ is said to be p-asymptotically

uniformly smooth (in short p-AUS) if there exists C > 0 such that

∀ τ ∈ [0,∞) ̺X(τ) ≤ Cτp.

We say X is p-asymptotically uniformly smoothable (p-AUS-able) if X admits

an equivalent p-AUS norm. We say X is asymptotically uniformly flat (AUF) if

there exists τ0 > 0 such that ̺X(τ0) = 0. We say X is asymptotically uniformly

flattenable (AUF-able) if X admits an equivalent AUF norm. Of course, p-AUS

spaces and AUF spaces are AUS spaces.

The dual notion is provided by the following modulus defined on X∗ by

δ
∗

X(τ) = inf
x∗∈SX∗

sup
E

inf
y∗∈SE

{ ‖x∗ + τy∗‖ − 1},

where E runs through cof∗(X∗), the set of all weak∗-closed subspaces of X∗ of

finite codimension. The norm of X∗ is said to be weak∗ asymptotically uniformly

convex (in short AUC∗) if

∀ τ > 0 δ
∗

X(τ) > 0.

For q ∈ [1,∞), it is said to be q-weak∗ asymptotically uniformly convex (in short

q-AUC∗) if there exists c > 0 such that

∀ τ ∈ [0, 1) δ
∗

X(τ) ≥ cτq.

It is well known that the dual Young function of ̺X is equivalent to δ
∗

X . Here is

the precise version of this, see Proposition 2.1 in [6].

Proposition 2.1. There exists a universal constant C ≥ 1 such that for any

Banach space X and any 0 < σ, τ < 1:

(1) If ̺X(σ) < στ , then δ
∗

X(Cτ) ≥ στ .

(2) If δ
∗

X(τ) > στ , then ̺X(σ/C) ≤ στ .

(3) Let p ∈ (1,∞] and q be its conjugate exponent. Then ‖·‖X is p-AUS if

and only if ‖·‖X∗ is q-AUC∗.

We now define the fundamental property, which turns out to characterize p-

AUS renormability, through a two-players game on a Banach space X . Fix 1 <

p 6 ∞ and let q be its conjugate exponent. We denote by WX the set of weak

neighborhoods of 0 in X . For c > 0, we define the T (c, p) game on X . In the

T (c, p) game, Player I chooses a weak neighborhood U1 ∈ WX , and Player II

chooses x1 ∈ U1 ∩ BX . Player I chooses U2 ∈ WX , and Player II chooses x2 ∈
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U2 ∩BX . Play continues in this way until (xi)
∞
i=1 has been chosen. Player I wins

if ‖(xi)
∞
i=1‖

w
q 6 c, and Player II wins otherwise, where

‖(xi)
∞
i=1‖

w
q = inf

{

c ∈ (0,∞], ∀ a = (ai)
∞
i=1 ∈ lp

∥

∥

∥

∥

∞
∑

i=1

aixi

∥

∥

∥

∥

≤ c‖a‖p

}

.

It is known, see [4], Section 3, that this game is determined. That is, either Player I

or Player II has a winning strategy. We now let tp(X) denote the infimum of those

c > 0 such that Player I has a winning strategy in the T (c, p) game, provided such

a c exists, and we let tp(X) = ∞ otherwise. We can now define our class Tp.

Definition 2.2. Let p ∈ (1,∞]. We denote Tp the class of all Banach spaces X

such that tp(X) < ∞.

Let D be a set. We denote ∅ the empty sequence and D6n = {∅} ∪
⋃n

i=1 D
i,

D<ω =
⋃∞

n=1 D
≤n, Dω the set of all infinite sequences whose members lie in D

and D6ω = D<ω ∪ Dω . For s, t ∈ D<ω, we let s a t denote the concatenation

of s with t. We let |t| denote the length of t. For 0 6 i 6 |t|, we let t|i denote

the initial segment of t having length i, where t|0 = ∅. If s ∈ D<ω, we let s ≺ t

denote the relation that s is a proper initial segment of t.

Given D a weak neighborhood basis of 0 in X and (xt)t∈D<ω ⊂ X , we say

(xt)t∈D<ω is weakly null provided that for each t ∈ {∅} ∪ D<ω, (xta(U))U∈D is

a weakly null net. Here D is directed by reverse inclusion.

We can now recall the main characterizations of this class, which are proved in

full generality in [4] and can be extracted from the proof of Theorem 3 of [18] in

the separable case.

Theorem 2.3. Fix 1 < p 6 ∞ and let q be conjugate to p. Let X be a Banach

space. The following are equivalent:

(i) X ∈ Tp.

(ii) There exists a constant c > 0 such that for any weak neighborhood basis

D at 0 in X and any weakly null (xt)t∈D<ω ⊂ BX , there exists τ ∈ Dω

such that ‖(xτ |i)
∞
i=1‖

w
q 6 c.

(iii) X is p-AUS-able (AUF-able if p = ∞, respectively).

(iv) X admits an equivalent norm whose dual is q-AUC∗.

Moreover, if X ∈ Tp, then any separable subspace of X has a separable dual.

3. Press down and lift up norms

We introduce in this section two constructions of norms on a Banach space

with a finite dimensional decomposition (we abbreviate FDD). We will recall the
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necessary background on FDD’s, shrinking FDD’s or boundedly complete FDD’s.

However, we refer the reader to [17] for possibly missing information. One can

trace back the use of lift up norms in the works of S. Prus [19]. As we will see, it

has also been widely exploited in the work of E. W. Odell and Th. Schlumprecht

[18] or D. Freeman, E. Odell, Th. Schlumprecht and A. Zsák [7]. For the press

down norm, we refer for instance to [5] for a general presentation.

We let (ui)
∞
i=1 denote the canonical basis of c00 (the space of finitely supported

scalar sequences). For subsets E,F of N, we let E < F denote the relation

that E = ∅, F = ∅, or maxE < minF . For f =
∑∞

i=1 aiui ∈ c00, we let

supp(f) = {i ∈ N : ai 6= 0}. For f, g ∈ c00, we let f < g denote the relation that

supp(f) < supp(g). For n ∈ N, E ⊂ N, and f ∈ c00, we let n 6 E denote the

relation that either E = ∅ or n 6 minE, and we let n 6 f denote the relation

that n 6 supp(f).

We recall that a finite dimensional decomposition for a Banach space Z is

a sequence H = (Hn)∞n=1 of finite dimensional, nonzero subspaces of Z such that

for any z ∈ Z, there exists a unique sequence (zn)∞n=1 ∈
∏∞

n=1 Hn such that

z =
∑∞

n=1 zn. Then, we let PH
n denote the canonical projections PH

n (z) = zn,

where z =
∑∞

n=1 zn and (zn)∞n=1 ∈
∏∞

n=1 Hn. For a finite or cofinite subset I

of N, we let PH

I = IH =
∑

n∈I P
H
n . When no confusion can arise, we omit the

superscript and simply denote IH by I. It follows from the principle of uniform

boundedness that sup{‖IH‖ : I ⊂ N is an interval} is finite. We refer to this

quantity as the projection constant of H in Z. If the projection constant of H

in Z is 1, we say H is bimonotone. It is well-known that if H is an FDD for Z,

then there exists an equivalent norm |·| on Z such that H is a bimonotone FDD

of (Z, |·|). Finally, we denote c00(H) the space of finite linear combinations of

elements in H1, . . . , Hn, . . .

Assume now that Z is a Banach space with FDD (Hj)
∞
j=1 = H and p ∈ [1,∞].

We first define the lift up norm associated with Z,H and p and the corresponding

Banach space Z∨,p(H) as the completion of c00(H) under the norm

‖z‖∨,p = sup

{

∥

∥

∥

(

‖Jiz‖Z
)∞

i=1

∥

∥

∥

lp
: Ji 6= ∅, J1 < J2 < . . . , N =

∞
⋃

i=1

Ji

}

.

We now define the press down norm associated with Z,H and p and the corre-

sponding Banach space Z∧,p(H). For z ∈ c00(H), we set

[z]∧,p = inf

{

∥

∥

∥

(

‖Jiz‖Z
)∞

i=1

∥

∥

∥

lp
: Ji 6= ∅, J1 < J2 < . . . , N =

∞
⋃

i=1

Ji

}

.
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Note that the conditions imposed on the Ji’s imply that they are intervals. Then

we define

‖z‖∧,p = inf

{ m
∑

n=1

[zn]∧,p : m ∈ N, zn ∈ c00(H), z =

m
∑

n=1

zn

}

.

It is easily checked that ‖·‖∧,p is a norm and we denote Z∧,p(H) the completion

of c00(H) under ‖·‖∧,p. It is clear that H is a FDD for Z∧,p(H) and that it is

bimonotone if H is a bimonotone FDD of Z. We shall use the following easy

technical simplification.

Proposition 3.1. Let Z be a Banach space with FDD H and p ∈ (1,∞]. Then

for any l ≤ m in N and any z ∈
⊕m

j=l Hj , there exist intervals I1 < . . . < In such

that
⋃n

i=1 Ii = [l,m] and

[z]∧,p =
∥

∥

∥

(

‖Iiz‖Z
)n

i=1

∥

∥

∥

lp
.

The following lemma will be useful for our estimates.

Lemma 3.2. Assume moreover that H is a bimonotone FDD of Z. Let I1 < I2
intervals of N and z1, z2 ∈ c00(H) with supp(zi) ⊂ Ii, then

z1 + z2 ∈ conv
{

y1 + y2, supp(yi) ⊂ Ii, [yi]∧,p ≤ ‖zi‖∧,p

}

.

Proof: It follows from standard arguments that the closed unit ball of Z∧,p(H)

is the closed convex hull of those z ∈ c00(H) such that [z]∧,p ≤ 1. Since H is

bimonotone, we clearly have that for any interval I ⊂ N and z ∈ Z, [Iz]∧,p ≤

[z]∧,p. Combining these two facts, we get that any z in the closed linear span of

{Hj , j ∈ I} is in the closed convex hull of those y’s in the closed linear span of

{Hj , j ∈ I} satisfying [y]∧,p ≤ ‖z‖∧,p. This finishes the proof. �

We now detail a simple but crucial effect of the press down procedure.

Proposition 3.3. Let Z be a Banach space with bimonotone FDD H. Fix 1 <

p 6 ∞. Then, the FDD H of the space Z∧,p(H) satisfies upper p block estimates,

with constant 1. More precisely, for all x, y ∈ c00(H) so that x < y, we have

‖x + y‖p∧,p ≤ ‖x‖p∧,p + ‖y‖p∧,p, if p ∈ (1,∞)

and

‖x + y‖∧,∞ = max{‖x‖∧,∞, ‖y‖∧,∞}, if p = ∞.

In particular Z∧,p(H) has Tp.

Proof: We only detail the case p ∈ (1,∞). Let x, y ∈ c00(H) so that x < y and

I < J intervals such that supp(x) ⊂ I, supp(y) ⊂ J and I ∪ J is an interval
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containing 1. By Proposition 3.1, there exist m,n ∈ N and I1 < . . . < Im+n such

that
⋃m

i=1 Ii = I,
⋃m+n

i=m+1 Ii = J and

[x]p∧,p =

m
∑

i=1

‖Iix‖
p
Z and [y]p∧,p =

m+n
∑

i=m+1

‖Iiy‖
p
Z .

We complete with (Ij)j>m+n an arbitrary interval partition of N \ (I ∪ J). Then

‖x + y‖p∧,p 6 [x + y]p∧,p 6

∞
∑

i=1

‖Ii(x + y)‖pZ

=

m
∑

i=1

‖Iix‖
p
Z +

∞
∑

i=m+1

‖Iiy‖
p
Z = [x]p∧,p + [y]p∧,p.

The conclusion now follows from Lemma 3.2.

These upper p block estimates, with constant 1 clearly imply that ‖·‖∧,p is

p-AUS and therefore that Z∧,p(H) ∈ Tp. �

We now need to recall some basics on dual FDD’s. If Z is a Banach space

with FDD H = (Hn)∞n=1, we let H∗ denote the sequence (H∗
n)∞n=1. Here, H∗

n is

identified with the sequence ((PH
n )∗(Z∗))∞n=1. This identification does not need

to be isometric if H is not bimonotone in Z. We let Z(∗) = c00(H∗) ⊂ Z∗. The

FDD H is said to be shrinking if Z(∗) = Z∗, which occurs if and only if any

bounded block sequence with respect to H is weakly null. The FDD H is said

to be boundedly complete if H∗ is a shrinking FDD of Z(∗) (in that case Z is

canonically isomorphic to (Z(∗))∗).

The duality between press down and lift up norms is described by the following

proposition, which is a special case of Proposition 2.1 in [5].

Proposition 3.4. Let Z be a Banach space with bimonotone shrinking FDD H.

Let p ∈ (1,∞] and q be its conjugate exponent. Then Z∧,p(H)∗ is canonically

isometric to Z∨,q(H
∗).

The following is an immediate corollary of Proposition 3.3.

Corollary 3.5. Let Z be a Banach space with bimonotone FDD H and p ∈

(1,∞], then H is a shrinking FDD of Z∧,p(H).

Remark 3.6. Note that for p = ∞, it follows from Proposition 3.3 that if Z is

a Banach space with bimonotone FDD H, then Z∧,∞(H) is simply isometric to the
(
∑∞

i=1 Hi

)

c0
. In particular, for any ε > 0, it is (1 + ε)-isomorphic to a subspace

of c0.
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4. A universal space for separable p-AUS-able spaces

4.1 The main result. The statements from this section can all be found either

explicitly or implicitly in [7]. We recall the main steps. The only difference with

[7] is the emphasis that we choose to put on press down instead of lift up norms.

Theorem 4.1. Let p ∈ (1,∞] and X be a separable Banach space with Tp.

Then:

(i) There exists a Banach space Z with a bimonotone shrinking FDD H such

that X is isomorphic to a subspace of Z∧,p(H).

(ii) There exists a Banach space Y with a bimonotone shrinking FDD N such

that X is isomorphic to a quotient of Y∧,p(N).

Proof: Assume that X ∈ Tp ∩ Sep. Then, by Theorem 2.3, X∗ is separable and

X satisfies lp upper tree estimates (condition (ii) in Theorem 2.3). This easily

implies that X satisfies subsequential lp upper tree estimates in the sense of [7],

from which we just have to apply Theorem 1.1 in [7] to conclude. To be more

accurate, this information is in the proof of this Theorem 1.1, where the authors

actually show the existence of weak∗ isomorphisms from X∗ onto a quotient of

Z∗
∨,q(H

∗) by a weak∗ closed subspace (onto a weak∗ closed subspace of Y∨,q(N∗),

respectively), where q is the conjugate exponent of p. The conclusion then follows

from Proposition 3.4. �

The next idea from [7] is to use the complementably universal space for Banach

spaces with an FDD built by G. Schechtman in [20]. More precisely, G. Schecht-

man proved the following: for a given sequence J = (Jn)∞n=1 of finite dimensional

normed spaces which is dense in the space of all finite dimensional normed spaces

for the Banach–Mazur distance, there exists a Banach space W (J) with bimono-

tone FDD J such that if Z is any Banach space with bimonotone FDD H, then

there exist integers m1 < m2 < . . . and a bounded, linear operator A : Z → W (J)

such that A(Hn) = Jmn
for all n ∈ N and

∀ z ∈ Z
1

2
‖z‖Z 6 ‖Az‖W (J) 6 2‖z‖Z

and such that A(Z) = span {Jmn
: n ∈ N} is 1-complemented in W (J) via the

map P : w 7→
∑∞

n=1 P
J
mn

w. Then one can prove:

Proposition 4.2. Let p ∈ (1,∞]. Keeping the above notation, we have that

A : c00(H) → c00(J) extends to an isomorphic embedding Ã : Z∧,p(H) → W∧,p(J),

the range of which is still 1-complemented in W∧,p(J) by P .

Combining Theorem 4.1 and Proposition 4.2, we deduce the following ultimate

result. We insist on the fact that it can be extracted from [7], although it is only
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stated there for embeddings (Corollary 3.3) and the construction is made in terms

of lift up norms in the dual FDD’s.

Theorem 4.3. Let p ∈ (1,∞] and J be a Banach–Mazur dense sequence of finite

dimensional normed spaces. Then every space in Tp ∩ Sep is both isomorphic

to a subspace and to a quotient of W∧,p(J). In other words, W∧,p(J) is both

injectively universal and surjectively universal for Tp ∩ Sep.

Remark 4.4. We conclude this section with the following elementary and well

known remark: one cannot expect an analogous statement for p-uniformly smooth-

able spaces. Indeed, for all q ∈ [2,∞), the space lq is 2-uniformly smooth. Now

let X be a Banach space containing an isomorphic copy of all 2-uniformly smooth

separable Banach spaces. Then X isomorphically contains lq for 2 ≤ q < ∞.

It follows from standard arguments that X has trivial cotype, therefore is not

super-reflexive and thus does not admit any equivalent uniformly smooth norm.

4.2 A few remarks on this universal space. For a Banach space X , we

denote by S(X) the class of all Banach spaces isomorphic to a subspace of X

and by Q(X) the class of all Banach spaces isomorphic to a quotient of X . In

the following proposition, the case p = ∞ is an old result by W. B. Johnson and

M. Zippin, see [12].

Proposition 4.5. Let p ∈ (1,∞] and J be a Banach–Mazur dense sequence of

finite dimensional normed spaces. Then

Tp ∩ Sep = S(W∧,p(J)) = Q(W∧,p(J)).

Proof: By Proposition 3.3, W∧,p(J) has Tp. The property Tp passes clearly to

subspaces and also passes to quotients, by characterization (iv) of Theorem 2.3.

The other inclusions are insured by Theorem 4.3. �

Remark 4.6. Note that W∧,∞(J) is not isomorphic to c0. For instance, because

W∧,∞(J)∗ uniformly contains the ln∞’s while l1 does not. We recall in passing

that T∞ ∩ Sep = S(c0) and also that Q(c0) ( S(c0). See [12] for the inclusion

Q(c0) ⊂ S(c0) and note that the dual of a quotient of c0 has cotype 2 unlike the

dual of Y =
(
∑∞

n=1 l
n
1

)

c0
and Y linearly embeds into c0.

Proposition 4.7. Let p ∈ (1,∞] and J be a Banach–Mazur dense sequence of

finite dimensional normed spaces. Then, the space lp(W∧,p(J)) (c0(W∧,∞(J)) if

p = ∞) is isomorphic to W∧,p(J).

Proof: We treat the case p ∈ (1,∞) (the case p = ∞ is identical). Denote

X = W∧,p(J). We first show that Z = lp(X) is isomorphic to a complemented

subspace of X . Indeed, there exists a bijection Φ: N → N × N such that the
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space Z has an FDD K with the property that, Kn = Jk if Φ(n) = (i, k) and

‖x + y‖pZ ≤ ‖x‖pZ + ‖y‖pZ, whenever x, y ∈ c00(K) with x < y. Clearly, this

upper lp block estimate implies that Z∧,p(K) is isomorphic to Z. It then follows

from Proposition 4.2 that Z is isomorphic to a complemented subspace of X .

We now conclude the proof with Pe lczyński’s classical decomposition method.

Let E be a subspace of X such that X ≃ lp(X) ⊕ E. Then

lp(X) ≃ lp(lp(X) ⊕p E) ≃ lp(lp(X)) ⊕p lp(E) ≃ lp(lp(X)) ⊕p lp(E) ⊕p E

≃ lp(lp(X) ⊕p E) ⊕p E ≃ lp(X) ⊕p E ≃ X.

�

We conclude this section by showing that W∧,p(J) does not depend (up to

isomorphism) on the choice of the dense sequence J.

Proposition 4.8. Let p ∈ (1,∞] and J and K be two Banach–Mazur dense

sequences of finite dimensional normed spaces. Then W∧,p(J) is isomorphic to

W∧,p(K).

Proof: Denote X = W∧,p(J) and Y = W∧,p(K). As in the previous proof, we

deduce from Proposition 4.2 that Y is isomorphic to a complemented subspace

of X and X is isomorphic to a complemented subspace of Y . Let E be a subspace

of X such that X ≃ Y ⊕E. We can now apply Pe lczyński’s decomposition method

together with the previous proposition to get:

X ⊕p Y ≃ lp(Y ⊕p E) ⊕p Y ≃ lp(Y ) ⊕p Y ⊕p lp(E) ≃ lp(Y ) ⊕p lp(E)

≃ lp(Y ⊕p E) ≃ lp(X) ≃ X.

For symmetric reasons, X ⊕p Y ≃ Y . This finishes the proof. �

5. Complexity of the class of separable p-AUS-able spaces

5.1 Preliminaries. We recall the setting introduced by B. Bossard in [3] in

order to apply the tools from descriptive set theory to the class Sep of separable

Banach spaces. We also refer the reader to the more recent paper by G. Godefroy

and J. Saint-Raymond [10], where an even more complete topological frame is

presented.

A Polish space (topology, respectively) is a separable completely metrizable

space (topology, respectively). A set X equipped with a σ-algebra is called a stan-

dard Borel space if the σ-algebra is generated by a Polish topology on X . A subset

of such a standard Borel space X is called Borel if it is an element of the corre-

sponding σ-algebra and it is called analytic (or a Σ1
1-set) if there exist a standard
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Borel space Y and a Borel subset B of X × Y such that A is the projection of B

on the first coordinate. The complement of an analytic set is called a coanalytic

set (or a Π1
1 set). A subset A of a standard Borel space X is called Σ1

1-hard if

for every Σ1
1 subset B of a standard Borel space Y , there exists a Borel map

f : Y → X such that f−1(A) = B and it is called Σ1
1-complete if it is both Σ1

1

and Σ1
1-hard. We refer the reader to the textbook [14] for a thorough exposition

of descriptive set theory.

Let X be a Polish space. Then, the set F(X) of all closed subsets of X can

be equipped with its Effros–Borel structure, defined as the σ-algebra generated

by the sets {F ∈ F(X) : F ∩U 6= ∅}, where U varies over the open subsets of X .

Equipped with this σ-algebra, F(X) is a standard Borel space.

Following B. Bossard in [3], we now introduce the fundamental coding of sep-

arable Banach spaces. It is well known that C(∆), the space of scalar valued

continuous functions on the Cantor space ∆ = {0, 1}N, equipped with the sup-

norm, contains an isometric linear copy of every separable Banach space. We

equip F(C(∆)) with its corresponding Effros–Borel structure. Then, we denote

SB = {F ∈ F(C(∆)): F is a linear subspace of C(∆)},

considered as a subspace of F(C(∆)). Then SB is a Borel subset of F(C(∆)),

see [3], Proposition 2.2, and therefore a standard Borel space, that we call the

standard Borel space of separable Banach spaces.

Let us now denote “≃” the isomorphism equivalence relation on SB. The

fundamental coding of separable Banach spaces is the quotient map c : SB →

SB/ ≃. We can now give the following definition.

Definition 5.1. A family G ⊂ SB/ ≃ is Borel (analytic, coanalytic, respectively)

if c−1(G) is Borel (analytic, coanalytic, respectively) in SB.

It is worth noting that there are other natural codings of separable Banach

spaces, for instance as quotients of l1. They yield the same definition of Borel or

analytic classes of separable Banach spaces, as it is shown in [3].

5.2 The class Sep ∩ Tp is analytic complete. It is easily seen that the class

of separable Banach spaces that linearly embed into a fixed separable Banach

space Z is Σ1
1, see Lemma 3.6 in [2] for instance. So, it follows immediately from

the existence of a universal space for the class Sep∩Tp that Sep∩Tp is Σ1
1. The

main purpose of this section will be to show that this is optimal.

Theorem 5.2. Let p ∈ (1,∞]. Then, the class Sep ∩ Tp is Σ1
1-complete.

The case p = ∞ was settled by O. Kurka in [15], where he showed that the class

of all Banach spaces that linearly embed into c0 (which coincides with Sep∩T∞)
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is Σ1
1-complete. Our result will follow from an adaptation of Kurka’s argument,

which relies in particular on the use of a Tsirelson-type Banach space constructed

by S. A. Argyros and I. Deliyanni in [1] that we shall describe now. We denote

K(2N), the set of compact subsets of 2N, the power set of N. Then we equip K(2N)

with its Hausdorff topology. For M ∈ K(2N), one can define a space, denoted

T s∗[M, 1/2] in [15], but that we will just denote TM here. Let us gather here

the properties of TM that we shall need, see [15].

Proposition 5.3. Let M ∈ K(2N). Then:

(1) The canonical basis (un)∞n=1 of TM is normalized and 1-unconditional.

(2) If M contains all 3 elements sets, then (un)∞n=1 is shrinking.

(3) If M consists only of finite sets, then (un)∞n=1 is boundedly complete.

(4) If M contains an infinite set, then TM is isomorphic to a c0-sum of

finite dimensional spaces. More precisely, there exists an infinite sequence

1 = m0 < m1 < . . . < mk < . . . such that for all x = (xn) ∈ c00:

sup
k∈N

∥

∥

∥

∥

mk−1
∑

n=mk−1

xnun

∥

∥

∥

∥

TM

≤

∥

∥

∥

∥

∞
∑

n=1

xnun

∥

∥

∥

∥

TM

≤ 2 sup
k∈N

∥

∥

∥

∥

mk−1
∑

n=mk−1

xnun

∥

∥

∥

∥

TM

.

A key tool in Kurka’s argument is the following particular case of a theorem

due to W. Hurewicz, see [15] and references therein.

Theorem 5.4 (Hurewicz). Let I be the set of all infinite subsets of N. Then

{M ∈ K(2N) : M∩I 6= ∅} is Σ1
1-complete.

We also need to recall the construction of the q-convexification of a Banach

space X . So let q ∈ [1,∞) and X be a Banach space with a normalized 1-

unconditional basis (en)∞n=1. Let

Xq =

{

x = (xn)∞n=1 ∈ RN : xq =
∞
∑

n=1

|xn|
qen ∈ X

}

and endow it with the norm ‖x‖Xq =
∥

∥xq
∥

∥

1/q

X
. We also denote (en)∞n=1 the

sequence of coordinate vectors in Xq. It is clear that (en)∞n=1 is a normalized

1-unconditional basis of Xq and that X1 is isometric to X . Also, the triangle

inequality implies that Xq is q-convex with constant 1, meaning that for any

x1, . . . , xn ∈ Xq

∥

∥

∥

∥

∞
∑

j=1

(

|x1
j |

q + · · · + |xn
j |

q
)1/q

ej

∥

∥

∥

∥

Xq

≤
(

‖x1‖qXq + · · · + ‖xn‖qXq

)1/q
.
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Note that it follows that if x1, . . . , xn ∈ Xq have disjoint supports with respect

to (en)∞n=1, then

‖x1 + · · · + xn‖qXq ≤ ‖x1‖qXq + · · · + ‖xn‖qXq .

In particular, the norm of Xq is clearly q-AUS and therefore Xq ∈ Tq. Note also

that, if q > 1, the above inequality implies that (en) is a shrinking basis of Xq.

We shall need a few other properties of Xq that we list in the next lemmas, in

which we will always assume that (en)∞n=1 is a normalized 1-unconditional basis

of the Banach space X and q ∈ [1,∞).

Lemma 5.5. Assume moreover that there exist a constant C ≥ 1 and an infinite

sequence 1 = m0 < m1 < . . . < mk < . . . such that for all x = (xn) ∈ c00:

1

C

∑

k∈N

∥

∥

∥

∥

mk−1
∑

n=mk−1

xnen

∥

∥

∥

∥

X

≤

∥

∥

∥

∥

∞
∑

n=1

xnen

∥

∥

∥

∥

X

≤ C
∑

k∈N

∥

∥

∥

∥

mk−1
∑

n=mk−1

xnen

∥

∥

∥

∥

X

.

Then Xq is isomorphic to an lq-sum of finite dimensional spaces.

Proof: It is clear that for all x = (xn) ∈ c00,

1

C

∑

k∈N

∥

∥

∥

∥

mk−1
∑

n=mk−1

xnen

∥

∥

∥

∥

q

Xq

≤

∥

∥

∥

∥

∞
∑

n=1

xnen

∥

∥

∥

∥

q

Xq

≤ C
∑

k∈N

∥

∥

∥

∥

mk−1
∑

n=mk−1

xnen

∥

∥

∥

∥

q

Xq

.

�

Assume now that (en)∞n=1 is a boundedly complete basis of X . It is immediate

to check that the coordinate vectors, still denoted (en)∞n=1, form a boundedly

complete basis of Xq. In this situation, we shall denote (Xq)∗ the predual of Xq

given by the closed linear span in (Xq)∗ of the dual basis of (en)∞n=1. Recall that,

if q > 1, (en) is also a shrinking basis of Xq, which is therefore reflexive. We can

now prove the following.

Lemma 5.6. Let q ∈ (1,∞) and p be its conjugate exponent. Assume that X

is reflexive. Then lq is not isomorphic to any subspace of Xq. Moreover (Xq)∗
does not belong to Tp.

Proof: Assume that lq is isomorphic to a subspace of Xq. Then we can find

a normalized sequence (xn) in Xq which is equivalent to the canonical basis of lq.

Since this sequence is weakly null in Xq, we can as well assume that the xn’s

have finite consecutive disjoint supports with respect to the basis (en). Denote

now yn = xq
n ∈ X , which is normalized in X . Using the 1-unconditionality of

(en) in X , it follows from our assumptions that there exists C > 0 such that for
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any a1, . . . , an ∈ R:

∥

∥

∥

∥

n
∑

i=1

aiyi

∥

∥

∥

∥

X

=

∥

∥

∥

∥

( n
∑

i=1

|ai|
1/qxi

)q∥
∥

∥

∥

X

=

∥

∥

∥

∥

n
∑

i=1

|ai|
1/qxi

∥

∥

∥

∥

q

Xq

≥ C

n
∑

i=1

|ai|.

This implies that (yn) is equivalent for the norm of X to the canonical basis

of l1, which contradicts the fact that X is reflexive. We have proved that lq is

not isomorphic to any subspace of Xq.

Assume now that (Xq)∗ ∈ Tp. We already explained that Xq ∈ Tq. Then

we can inductively construct two normalized sequences (xn) in Xq and (x∗
n) in

(Xq)∗ with consecutive supports with respect to the respective bases of Xq and

(Xq)∗, that are biorthogonal to each other and such that (xn) is dominated by

the canonical basis of lq and (x∗
n) is dominated by the canonical basis of lp

(also use the fact the bases are 1-unconditional). It then readily follows from

Hölder’s inequality that (xn) is equivalent to the canonical basis of lq, which is

a contradiction. �

We are now ready to prove our result.

Proof of Theorem 5.2: Fix p ∈ (1,∞) and denote q its conjugate exponent.

Let us denote A3 the set of all subsets of N of cardinality at most 3. For

M ∈ K(2N), we denote XM = TM∪A3
. For any M ∈ K(2N), the basis (un) of

XM is 1-unconditional and shrinking. Note also that M∪A3 contains an infinite

element if and only if M does. So XM is reflexive if and only if M contains no

infinite element and otherwise XM is isomorphic to a c0-sum of finite dimensional

spaces. The space YM := X∗
M has a 1-unconditional boundedly complete basis

(en) and so does Y q
M (the q-convexification of YM). We then set ZM = (Y q

M)∗.

By abuse of notation, for any M ∈ K(2N), we shall denote (en) the canonical

basis of YM or Y q
M and (un) the canonical basis of XM or ZM.

If M∩ I 6= ∅, then we apply property (4) of Proposition 5.3 and Lemma 5.5

to deduce that Y q
M is isomorphic to an lq-sum of finite dimensional spaces. Then

ZM is isomorphic to an lp-sum of finite dimensional spaces and therefore is in Tp.

On the other hand, if M ∩ I = ∅, then XM is reflexive and, by Lemma 5.6,

ZM /∈ Tp. Our next goal is to show the existence of a Borel map Θ: K(2N) → SB

such that for all M ∈ K(2N), Θ(M) is isometric to ZM. For this, we only have

to slightly modify Kurka’s argument. We shall first use the following.

Lemma 5.7 (Fact 3.4 in [15]). Let M1,M2 ∈ K(2N) and l ∈ N so that

{

A ∩ {1, . . . , l} : A ∈ M1

}

=
{

A ∩ {1, . . . , l} : A ∈ M2

}

.

Then ‖x‖TM1
= ‖x‖TM2

for all x ∈ span{u1, . . . , ul}.
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We claim that the spaces ZM satisfy the same property. Indeed, assume as

above that
{

A ∩ {1, . . . , l} : A ∈ M1

}

=
{

A ∩ {1, . . . , l} : A ∈ M2

}

.

Then,
{

A ∩ {1, . . . , l} : A ∈ M1 ∪ A3

}

=
{

A ∩ {1, . . . , l} : A ∈ M2 ∪ A3

}

.

So, ‖x‖XM1
= ‖x‖XM2

for all x ∈ span {u1, . . . , ul}. Consequently, for all y ∈

span{e1, . . . , el}, ‖y‖YM1
= ‖y‖YM2

. Here we just use the definition of a dual

norm and the fact that the basis (un) is monotone. Clearly we then have that

‖y‖Y q

M1

= ‖y‖Y q

M2

for all y ∈ span {e1, . . . , el}, and using Hahn–Banach theorem

and the fact that the basis (en) is also monotone we get that ‖x‖ZM1
= ‖x‖ZM2

for all x ∈ span{u1, . . . , ul}. Now we can deduce from [15] (see argument in

the proof of Lemma 3.8) that for every x ∈ c00, the map M 7→
∥

∥

∑∞
i=1 xiui

∥

∥

ZM

is continuous from K(2N) to R. It finally follows from Lemma 2.4 in [15] that

there exists a Borel map Θ: K(2N) → SB such that for all M ∈ K(2N), Θ(M) is

isometric to ZM.

By Hurewicz’s theorem, C = {M ∈ K(2N) : M ∩ I 6= ∅} is Σ1
1-complete in

K(2N) and we have that Θ(M) ∈ Tp if and only if M ∈ C. This is known to

imply that Tp∩ Sep is Σ1
1-hard, see Lemma 2.1 in [15], and therefore Σ1

1-complete,

as we already know that it is Σ1
1. �

We conclude this paper with a remark that has been kindly suggested to us

by the referee. Recall first that it follows easily from Kwapien’s theorem that the

isomorphism class of l2 is Borel. In [8], G. Godefroy proved that, for 1 < p < ∞,

the isomorphism class of lp is also Borel. On the other hand, O. Kurka showed

in [16] that the isomorphism class of c0 is not Borel. The following statement is

due to O. Kurka [15], Remarks 3.10 (ii) and (vii), for p = 1 and the same proof

combined with our construction can be applied to obtain the following.

Proposition 5.8. Let p ∈ (1,∞) and J = (Jn)∞n=1 be a Banach–Mazur dense se-

quence of finite dimensional spaces. Then, the isomorphism class of
(
∑∞

n=1 Jn
)

lp

is not Borel.

Proof: Recall that for M ∈ K(2N), ZM is isomorphic to an lp-sum of finite

dimensional spaces if M contains an infinite subset of N and not in Tp otherwise.

It follows easily that ZM is isomorphic to
(
∑∞

n=1 Jn
)

lp
if and only if M contains

an infinite subset of N. The conclusion then follows from the previous arguments.

�
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