Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
CKV-type B-matrix; P-matrix; real eigenvalues localization
Summary:
By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) \hbox {B-matrices}, a new class of nonsingular matrices called CKV-type $\overline {\text {B}}$-matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness of the obtained results.
References:
[1] Brauer, A.: Limits for the characteristic roots of a matrix. II. Duke Math. J. 14 (1947), 21-26. DOI 10.1215/S0012-7094-47-01403-8 | MR 0020540 | Zbl 0029.33701
[2] Cvetkovic, L., Kostic, V., Varga, R. S.: A new Geršgorin-type eigenvalue inclusion set. ETNA, Electron. Trans. Numer. Anal. 18 (2004), 73-80. MR 2114449 | Zbl 1069.15016
[3] Chen, X., Xiang, S.: Computation of error bounds for $P$-matrix linear complementarity problems. Math. Program. 106 (2006), 513-525. DOI 10.1007/s10107-005-0645-9 | MR 2216793 | Zbl 1134.90043
[4] Wang, Y., Song, X., Gao, L.: CKV-type-B-code. Available at \brokenlink{ https://github.com/{gaolei11712/CKV-type-B-code.git}}
[5] Cvetković, D. L., Cvetković, L., Li, C.: CKV-type matrices with applications. Linear Algebra Appl. 608 (2021), 158-184. DOI 10.1016/j.laa.2020.08.028 | MR 4142201 | Zbl 1458.15064
[6] Fallat, S. M., Johnson, C. R.: Sub-direct sums and positivity classes of matrices. Linear Algebra Appl. 288 (1999), 149-173. DOI 10.1016/S0024-3795(98)10194-5 | MR 1670523 | Zbl 0973.15013
[7] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 12 (1962), 382-400. DOI 10.21136/CMJ.1962.100526 | MR 0142565 | Zbl 0131.24806
[8] Gershgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, Otd. Mat. Estest. Nauk, VII. Ser. 6 (1931), 749-754 Russian. Zbl 0003.00102
[9] Li, H.-B., Huang, T.-Z., Li, H.: On some subclasses of $P$-matrices. Numer. Linear Algebra Appl. 14 (2007), 391-405. DOI 10.1002/nla.524 | MR 2312426 | Zbl 1199.15072
[10] Li, C., Li, Y.: Double $B$-tensors and quasi-double $B$-tensors. Linear Algebra Appl. 466 (2015), 343-356. DOI 10.1016/j.laa.2014.10.027 | MR 3278256 | Zbl 1303.15034
[11] Li, C., Liu, Q., Li, Y.: Geršgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices. Linear Multilinear Algebra 63 (2015), 2159-2170. DOI 10.1080/03081087.2014.986044 | MR 3401934 | Zbl 1335.15023
[12] Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y.: Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 255 (2014), 1-14. DOI 10.1016/j.cam.2013.04.022 | MR 3093400 | Zbl 1291.15065
[13] Liu, J., Zhang, J., Liu, Y.: The Schur complement of strictly doubly diagonally dominant matrices and its application. Linear Algebra Appl. 437 (2012), 168-183. DOI 10.1016/j.laa.2012.02.001 | MR 2917437 | Zbl 1248.15018
[14] Peña, J. M.: A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22 (2001), 1027-1037. DOI 10.1137/S0895479800370342 | MR 1824055 | Zbl 0986.15015
[15] Peña, J. M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95 (2003), 337-345. DOI 10.1007/s00211-002-0427-8 | MR 2001081 | Zbl 1032.15014
[16] Peña, J. M.: Exclusion and inclusion intervals for the real eigenvalues of positive matrices. SIAM J. Matrix Anal. Appl. 26 (2005), 908-917. DOI 10.1137/04061074X | MR 2178204 | Zbl 1082.15031
[17] Shen, S.-Q., Huang, T.-Z., Jing, Y.-F.: On inclusion and exclusion intervals for the real eigenvalues of real matrices. SIAM J. Matrix Anal. Appl. 31 (2009), 816-830. DOI 10.1137/080717961 | MR 2530278 | Zbl 1195.15023
[18] Song, X., Gao, L.: CKV-type $B$-matrices and error bounds for linear complementarity problems. AIMS Math. 6 (2021), 10846-10860. DOI 10.3934/math.2021630 | MR 4294618 | Zbl 07536366
[19] Varga, R. S.: Geršgorin-type eigenvalue inclusion theorems and their sharpness. ETNA, Electron. Trans. Numer. Anal. 12 (2001), 113-133. MR 1832018 | Zbl 0979.15015
[20] Varga, R. S.: Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer, Berlin (2004). DOI 10.1007/978-3-642-17798-9 | MR 2093409 | Zbl 1057.15023
[21] Zhao, J., Liu, Q., Li, C., Li, Y.: Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices. Linear Algebra Appl. 552 (2018), 277-287. DOI 10.1016/j.laa.2018.04.028 | MR 3804489 | Zbl 1391.15043
Partner of
EuDML logo