Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
power residues modulo prime; the tangent function; identity
Summary:
Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\pmod {2m}$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _{k\in R_m(p)}(1+\tan (\pi ak/p))$, where $$ R_m(p)=\{0<k<p\colon k\in \mathbb Z\ \text {is an}\ m\text {th power residue modulo}\ p\}. $$ In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb Z$, then $$ \prod _{k\in R_4(p)} \Big (1+\tan \pi \frac {ak}p\Big )=(-1)^{y}(-2)^{(p-1)/8}. $$
References:
[1] Berndt, B. C., Evans, R. J., Williams, K. S.: Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1998). MR 1625181 | Zbl 0906.11001
[2] Cox, D. A.: Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1989). DOI 10.1002/9781118400722 | MR 1028322 | Zbl 0956.11500
[3] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84. Springer, New York (1990). DOI 10.1007/978-1-4757-2103-4 | MR 1070716 | Zbl 0712.11001
[4] Sun, Z.-W.: Trigonometric identities and quadratic residues. Publ. Math. Debr. 102 (2023), 111-138. DOI 10.5486/PMD.2023.9352 | MR 4556502 | Zbl 7650970
Partner of
EuDML logo