Article
Keywords:
power residues modulo prime; the tangent function; identity
Summary:
Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\pmod {2m}$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _{k\in R_m(p)}(1+\tan (\pi ak/p))$, where $$ R_m(p)=\{0<k<p\colon k\in \mathbb Z\ \text {is an}\ m\text {th power residue modulo}\ p\}. $$ In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb Z$, then $$ \prod _{k\in R_4(p)} \Big (1+\tan \pi \frac {ak}p\Big )=(-1)^{y}(-2)^{(p-1)/8}. $$
References:
[1] Berndt, B. C., Evans, R. J., Williams, K. S.:
Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1998).
MR 1625181 |
Zbl 0906.11001
[2] Cox, D. A.:
Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1989).
DOI 10.1002/9781118400722 |
MR 1028322 |
Zbl 0956.11500