Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$k$-free number; exponential sum; Beatty sequence
Summary:
We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau <\infty $ and any constant $\varepsilon >0$, we can show that $$ \sum _{ 1\leq n\leq x \atop [\alpha n+\beta ]\in \mathcal {Q}_{k}} 1- \frac {x}{ \zeta (k)} \ll x^{k/(2k-1)+\varepsilon }+x^{1-1/(\tau +1)+\varepsilon }, $$ where $\mathcal {Q}_{k}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$ $\varepsilon ,$ $k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type $$ \sum _{1\leq h\leq H}\sum _{ 1\leq n\leq x \atop n\in \mathcal {Q}_{k}}e(\vartheta hn). $$
References:
[1] Abercrombie, A. G., Banks, W. D., Shparlinski, I. E.: Arithmetic functions on Beatty sequences. Acta Arith. 136 (2009), 81-89. DOI 10.4064/aa136-1-6 | MR 2469945 | Zbl 1227.11045
[2] Banks, W. D., Shparlinski, I. E.: Short character sums with Beatty sequences. Math. Res. Lett. 13 (2006), 539-547. DOI 10.4310/MRL.2006.v13.n4.a4 | MR 2250489 | Zbl 1220.11097
[3] Banks, W. D., Yeager, A. M.: Carmichael numbers composed of primes from a Beatty sequence. Colloq. Math. 125 (2011), 129-137. DOI 10.4064/cm125-1-9 | MR 2860586 | Zbl 1276.11151
[4] Brüdern, J., Perelli, A.: Exponential sums and additive problems involving square-free numbers. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 591-613. MR 1760532 | Zbl 1019.11028
[5] Dimitrov, S. I.: On the distribution of consecutive square-free numbers of the form $\lfloor\alpha n\rfloor,\lfloor\alpha n\rfloor+1$. Proc. Jangjeon Math. Soc. 22 (2019), 463-470. MR 3994243 | Zbl 1428.11163
[6] Goryashin, D. V.: Squarefree numbers in the sequence $\lfloor \alpha n\rfloor$. Chebyshevskii Sb. 14 (2013), 42-48 Russian. DOI 10.22405/2226-8383-2017-18-4-97-105 | Zbl 1430.11130
[7] Güloğlu, A. M., Nevans, C. W.: Sums of multiplicative functions over a Beatty sequence. Bull. Aust. Math. Soc. 78 (2008), 327-334. DOI 10.1017/S0004972708000853 | MR 2466868 | Zbl 1228.11151
[8] Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium Publications 53. AMS, Providence (2004). DOI 10.1090/coll/053 | MR 2061214 | Zbl 1059.11001
[9] Kim, V., Srichan, T., Mavecha, S.: On $r$-free integers in Beatty sequences. Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 28, 10 pages. DOI 10.1007/s40590-022-00422-x | MR 4395131 | Zbl 07493131
[10] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. John Wiley & Sons, New York (1974). MR 0419394 | Zbl 0281.10001
[11] Technau, M., Zafeiropoulos, A.: Metric results on summatory arithmetic functions on Beatty sets. Acta Arith. 197 (2021), 93-104. DOI 10.4064/aa200128-10-6 | MR 4185917 | Zbl 1465.11077
[12] Tolev, D. I.: On the exponential sum with square-free numbers. Bull. Lond. Math. Soc. 37 (2005), 827-834. DOI 10.1112/S0024609305004753 | MR 2186715 | Zbl 1099.11042
[13] Vinogradov, I. M.: The Method of Trigonometrical Sums in the Theory of Numbers. Dover, Mineola (2004). MR 2104806 | Zbl 1093.11001
Partner of
EuDML logo