Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
positively based algebra; indecomposable module; cell module
Summary:
We investigate the representation theory of the positively based algebra $A_{m,d}$, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that $A_{m,d}$ is of finite representative type if $d\leq 4$, of tame type if $d=5$, and of wild type if $d\ge 6.$ In the case when $d\leq 4$, all indecomposable representations of $A_{m,d}$ are constructed. Furthermore, their right cell representations as well as left cell representations of $A_{m,d}$ are described.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1: Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Gel'fand, I. M., Ponomarev, V. A.: Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. Hilbert Space Operators Operator Algebras Colloquia Math. Soc. János Bolyai 5. North-Holland, Amsterdam (1972), 163-237. MR 0357428 | Zbl 0294.15002
[3] Gunnlaugsdóttir, E.: Monoidal structure of the category of $u_{q}^{+}$-modules. Linear Algebra Appl. 365 (2003), 183-199. DOI 10.1016/S0024-3795(02)00484-6 | MR 1987337 | Zbl 1041.16027
[4] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), 165-184. DOI 10.1007/BF01390031 | MR 0560412 | Zbl 0499.20035
[5] Kildetoft, D., Mazorchuk, V.: Special modules over positively based algebras. Doc. Math. 21 (2016), 1171-1192. DOI 10.4171/dm/555 | MR 3578210 | Zbl 1369.16016
[6] Kudryavtseva, G., Mazorchuk, V.: On multisemigroups. Port. Math. (N.S.) 72 (2015), 47-80. DOI 10.4171/PM/1956 | MR 3323510 | Zbl 1333.20070
[7] Li, F.: Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation. J. Algebra 208 (1998), 72-100. DOI 10.1006/jabr.1998.7491 | MR 1643979 | Zbl 0916.16020
[8] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras. Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. DOI 10.1090/conm/585/11618 | MR 3077243 | Zbl 1309.19001
[9] Lusztig, G.: Irreducible representations of finite classical groups. Invent. Math. 43 (1977), 125-175. DOI 10.1007/BF01390002 | MR 0463275 | Zbl 0372.20033
[10] Lusztig, G.: A class of irreducible representations of Weyl group. Indag. Math. 41 (1979), 323-335. DOI 10.1016/1385-7258(79)90036-2 | MR 0546372 | Zbl 0435.20021
[11] Lusztig, G.: A class of irreducible representations of Weyl group. II. Indag. Math. 44 (1982), 219-226. DOI 10.1016/S1385-7258(82)80013-9 | MR 0662657 | Zbl 0511.20034
[12] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories. Compos. Math. 147 (2011), 1519-1545. DOI 10.1112/S0010437X11005586 | MR 2834731 | Zbl 1232.17015
[13] Nazarova, L. A.: Representations of a tetrad. Math. USSR, Izv. 1 (1969), 1305-1323 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 31 1967 1361-1378. DOI 10.1070/IM1967v001n06ABEH000619 | MR 0223352 | Zbl 0222.16028
[14] Su, D., Yang, S.: Representation rings of small quantum groups $\overline{U}_q(sl_2)$. J. Math. Phys. 58 (2017), Article ID 091704, 24 pages. DOI 10.1063/1.4986839 | MR 3704599 | Zbl 1375.81142
[15] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras. Period. Math. Hung. 76 (2018), 229-242. DOI 10.1007/s10998-017-0221-0 | MR 3805598 | Zbl 1399.16085
[16] Yang, S.: Representations of simple pointed Hopf algebras. J. Algebra Appl. 3 (2004), 91-104. DOI 10.1142/S021949880400071X | MR 2047638 | Zbl 1080.16043
Partner of
EuDML logo