[2] Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.:
Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E (3) 51 (1995), 1035-1042.
DOI 10.1103/PhysRevE.51.1035
[3] Cao, J. F., Han, C. Z., Fang, Y. W.: Nonlinear Systems Theory and Application. Xi'an Jiao Tong University Press, Xi'an (2006), ISBN 7-5605-2140-1\nopunct Chinese.
[4] Carrillo, F. A., Delgado, J., Saavedra, P., Velasco, R. M., Verduzco, F.:
Traveling waves, catastrophes and bifurcations in a generic second order traffic flow model. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350191, 15 pages.
DOI 10.1142/S0218127413501915 |
MR 3158306 |
Zbl 1284.90012
[5] Chen, B., Sun, D., Zhou, J., Wong, W., Ding, Z.:
A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles. Inform. Sci. 529 (2020), 59-72.
DOI 10.1016/j.ins.2020.02.009 |
MR 4093031
[6] Cui, N., Chen, B., Zhang, K., Zhang, Y., Liu, X., Zhou, J.:
Effects of route guidance strategies on traffic emissions in intelligent transportation systems. Physica A 513 (2019), 32-44.
DOI 10.1016/j.physa.2018.08.009
[7] Daganzo, C. F., Laval, J. A.:
Moving bottlenecks: A numerical method that converges in flows. Transp. Res., Part B 39 (2005), 855-863.
DOI 10.1016/j.trb.2004.10.004
[14] Gupta, A. K., Sharma, S.:
Nonlinear analysis of traffic jams in an anisotropic continuum model. Chin. Phys. B 19 (2010), Article ID 110503, 9 pages.
DOI 10.1088/1674-1056/19/11/110503
[15] Gupta, A. K., Sharma, S.:
Analysis of the wave properties of a new two-lane continuum model with the coupling effect. Chin. Phys. B 21 (2012), Article ID 015201, 15 pages.
DOI 10.1088/1674-1056/21/1/015201
[16] Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K.:
Quasi-solitons in dissipative systems and exactly solvable lattice models. Phys. Rev. Lett. 83 (1999), 718-721.
DOI 10.1103/PhysRevLett.83.718
[17] Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K.:
Bifurcation phenomena in the optimal velocity model for traffic flow. Phys. Rev. E (3) 64 (2001), Article ID 047102.
DOI 10.1103/PhysRevE.64.047102
[19] Jiang, R., Wu, Q.-S., Zhu, Z.-J.:
A new continuum model for traffic flow and numerical tests. Transp. Res., Part B 36 (2002), 405-419.
DOI 10.1016/S0191-2615(01)00010-8
[20] Kerner, B. S., Konhäuser, P.:
Cluster effect in initially homogeneous traffic flow. Phys. Rev. E (3) 48 (1993), 2335-2338.
DOI 10.1103/PhysRevE.48.R2335
[21] Kuznetsov, Y. A.:
Bifurcations of equilibria and periodic orbits in $n$-dimensional dynamical systems. Elements of Applied Bifurcation Theory Applied Mathematical Sciences 112. Springer, New York (1998), 151-194.
DOI 10.1007/978-0-387-22710-8_5 |
MR 1711790 |
Zbl 0914.58025
[22] Lei, L., Wang, Z., Wu, Y.:
Modeling and analyzing for a novel continuum model considering self-stabilizing control on curved road with slope. CMES, Comput. Model. Eng. Sci. 131 (2022), 1815-1830.
DOI 10.32604/cmes.2022.019855
[23] Ling, D., Jian, X. P.: Stability and bifurcation characteristics of a class of nonlinear vehicle following model. J. Traffic and Transportation Engineering and Information 7 (2009), 6-11.
[24] Ma, G., Ma, M., Liang, S., Wang, Y., Guo, H.:
Nonlinear analysis of the car-following model considering headway changes with memory and backward looking effect. Physica A 562 (2021), Article ID 125303, 12 pages.
DOI 10.1016/j.physa.2020.125303 |
MR 4157710 |
Zbl 07542618
[25] Ma, G., Ma, M., Liang, S., Wang, Y., Zhang, Y.:
An improved car-following model accounting for the time-delayed velocity difference and backward looking effect. Commun. Nonlinear Sci. Numer. Simul. 85 (2020), Article ID 105221, 10 pages.
DOI 10.1016/j.cnsns.2020.105221 |
MR 4065383 |
Zbl 1452.65169
[27] Orosz, G., Wilson, R. E., Krauskopf, B.:
Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. Phys. Rev. E (3) 70 (2004), Article ID 026207, 10 pages.
DOI 10.1103/PhysRevE.70.026207 |
MR 2129214
[29] Zeng, J., Qian, Y., Xu, D., Jia, Z., Huang, Z.:
Impact of road bends on traffic flow in a single-lane traffic system. Math. Probl. Eng. 2014 (2014), Article ID 218465, 6 pages.
DOI 10.1155/2014/218465 |
MR 3166824 |
Zbl 1407.90103
[30] Zhai, C., Wu, W.:
A new car-following model considering driver's characteristics and traffic jerk. Nonlinear Dyn. 93 (2018), 2185-2199.
DOI 10.1007/s11071-018-4318-7
[31] Zhai, C., Wu, W.:
Car-following model based delay feedback control method with the gyroidal road. Int. J. Mod. Phys. C 30 (2019), Article ID 1950073, 14 pages.
DOI 10.1142/S0129183119500736 |
MR 4015821
[32] Zhai, C., Wu, W.:
Lattice hydrodynamic model-based feedback control method with traffic interruption probability. Mod. Phys. Lett. B 33 (2019), Article ID 1950273, 16 pages.
DOI 10.1142/S0217984919502737 |
MR 3993691
[33] Zhai, C., Wu, W.:
A modified two-dimensional triangular lattice model under honk environment. Int. J. Mod. Phys. C 31 (2020), Article ID 2050089, 16 pages.
DOI 10.1142/S0129183120500898 |
MR 4119105
[34] Zhai, C., Wu, W.:
Lattice hydrodynamic modeling with continuous self-delayed traffic flux integral and vehicle overtaking effect. Mod. Phys. Lett. B 34 (2020), Article ID 2050071, 15 pages.
DOI 10.1142/S0217984920500712 |
MR 4068029
[35] Zhai, C., Wu, W.:
A macro traffic flow model with headway variation tendency and bounded rationality. Mod. Phys. Lett. B 35 (2021), Article ID 2150054, 15 pages.
DOI 10.1142/S0217984921500548 |
MR 4202802
[36] Zhai, C., Wu, W.:
Designing continuous delay feedback control for lattice hydrodynamic model under cyber-attacks and connected vehicle environment. Commun. Nonlinear Sci. Numer. Simul. 95 (2021), Article ID 105667, 18 pages.
DOI 10.1016/j.cnsns.2020.105667 |
MR 4192012 |
Zbl 1456.82635
[37] Zhang, P., Xue, Y., Zhang, Y.-C., Wang, X., Cen, B.-L.:
A macroscopic traffic flow model considering the velocity difference between adjacent vehicles on uphill and downhill slopes. Mod. Phys. Lett. B 34 (2020), Article ID 2050217, 18 pages.
DOI 10.1142/S0217984920502176 |
MR 4128734