[1] Blechta, J., Málek, J., Rajagopal, K. R.:
On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 52 (2020), 1232-1289.
DOI 10.1137/19M1244895 |
MR 4076814 |
Zbl 1432.76075
[6] Fosdick, R. L., Rajagopal, K. R.:
On the existence of a manifold for temperature. Arch. Ration. Mech. Anal. 81 (1983), 317-332.
DOI 10.1007/BF00250858 |
MR 683193
[8] Green, G.:
On the laws of the reflexion and refraction of light at the common surface of two non-crystallized media. Cambr. Phil. Soc. 7 (1837), 1-24 \99999JFM99999 03.0565.01.
DOI 10.1017/CBO9781107325074.009
[10] Korteweg, D. J.: Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité. Arch. Néerl. (2) 6 (1901), 1-24 French \99999JFM99999 32.0756.02.
[13] Málek, J., Rajagopal, K. R.:
On the modeling of inhomogeneous incompressible fluid-like bodies. Mech. Mater. 38 (2006), 233-242.
DOI 10.1016/j.mechmat.2005.05.020
[16] McLeod, J. B., Rajagopal, K. R., Wineman, A. S.:
On the existence of a class of deformations for incompressible isotropic elastic materials. Proc. R. Ir. Acad., Sect. A 88 (1988), 91-101.
MR 986216 |
Zbl 0676.73015
[18] Perlácová, T., Průša, V.:
Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 216 (2015), 13-21.
DOI 10.1016/j.jnnfm.2014.12.006 |
MR 3441833
[23] Rajagopal, K. R.:
A note on the classification of anisotropy of bodies defined by implicit constitutive relations. Mech. Res. Commun. 64 (2015), 38-41.
DOI 10.1016/j.mechrescom.2014.11.005
[28] Truesdell, C. A.:
A First Course in Rational Continuum Mechanics. Vol. 1. General Concepts. Pure and Applied Mathematics 71. Academic Press, New York (1977).
MR 0559731 |
Zbl 0357.73011