Previous |  Up |  Next

Article

Keywords:
renormalized solution; nonlinear elliptic equation; non-coercive problem
Summary:
This paper is devoted to the study of some nonlinear degenerated elliptic equations, whose prototype is given by $$ \begin{aligned}t 2&-{\rm div}( b(|u|)|\nabla u|^{p-2}\nabla u) + d(|u|)|\nabla u|^{p} = f - {\rm div}(c(x)|u|^{\alpha }) &\quad &\mbox {in}\ \Omega ,\\ & u = 0 &\quad &\mbox {on}\ \partial \Omega , \end{aligned}t $$ where $\Omega $ is a bounded open set of $\mathbb {R}^N$ ($N\geq 2$) with $1<p<N$ and $f \in L^{1}(\Omega ),$ under some growth conditions on the function $b(\cdot )$ and $d(\cdot ),$ where $c(\cdot )$ is assumed to be in $L^{\frac {N}{(p-1)}}(\Omega ).$ We show the existence of renormalized solutions for this non-coercive elliptic equation, also, some regularity results will be concluded.
References:
[1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.: Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79. DOI 10.1007/s10231-002-0056-y | MR 1970464 | Zbl 1105.35040
[2] Alvino, A., Ferone, V., Trombetti, G.: A priori estimates for a class of nonuniformly elliptic equations. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391. MR 1645729 | Zbl 0911.35025
[3] Ali, M. Ben Cheikh, Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data. Adv. Math. Sci. Appl. 16 (2006), 275-297. MR 2253236 | Zbl 1215.35066
[4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. MR 1354907 | Zbl 0866.35037
[5] Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988), 347-364. DOI 10.1016/S0294-1449(16)30342-0 | MR 0963104 | Zbl 0696.35042
[6] Blanchard, D., Guibé, O.: Infinite valued solutions of non-uniformly elliptic problems. Anal. Appl., Singap. 2 (2004), 227-246. DOI 10.1142/S0219530504000369 | MR 2070448 | Zbl 1129.35370
[7] Boccardo, L., Dall'Aglio, A., Orsina, L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81. MR 1645710 | Zbl 0911.35049
[8] Boccardo, L., Gallouet, T.: Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data. Nonlinear Anal., Theory Methods Appl. 19 (1992), 573-579. DOI 10.1016/0362-546X(92)90022-7 | MR 1183664 | Zbl 0795.35031
[9] Croce, G.: The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314. MR 2398428 | Zbl 1147.35043
[10] Vecchio, T. Del, Posteraro, M. R.: Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differ. Equ. 1 (1996), 899-917. MR 1392010 | Zbl 0856.35044
[11] Pietra, F. Della: Existence results for non-uniformly elliptic equations with general growth in the gradient. Differ. Integral Equ. 21 (2008), 821-836. MR 2483336 | Zbl 1224.35117
[12] Droniou, J.: Non-coercive linear elliptic problems. Potential Anal. 17 (2002), 181-203. DOI 10.1023/A:1015709329011 | MR 1908676 | Zbl 1161.35362
[13] Droniou, J.: Global and local estimates for nonlinear noncoercive elliptic equations with measure data. Commun. Partial Differ. Equations 28 (2003), 129-153. DOI 10.1081/PDE-120019377 | MR 1974452 | Zbl 1094.35046
[14] Guibé, O., Mercaldo, A.: Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data. Potential Anal. 25 (2006), 223-258. DOI 10.1007/s11118-006-9011-7 | MR 2255346 | Zbl 1198.35072
[15] Guibé, O., Mercaldo, A.: Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data. Trans. Am. Math. Soc. 360 (2008), 643-669. DOI 10.1090/S0002-9947-07-04139-6 | MR 2346466 | Zbl 1156.35042
[16] Leone, C., Porretta, A.: Entropy solutions for nonlinear elliptic equations in $L^1$. Nonlinear Anal., Theory Methods Appl. 32 (1998), 325-334. DOI 10.1016/S0362-546X(96)00323-9 | MR 1610574 | Zbl 1155.35352
[17] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[18] Maderna, C., Pagani, C. D., Salsa, S.: Quasilinear elliptic equations with quadratic growth in the gradient. J. Differ. Equations 97 (1992), 54-70. DOI 10.1016/0022-0396(92)90083-Y | MR 1161311 | Zbl 0785.35039
[19] Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales. Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French.
[20] Porretta, A.: Nonlinear equations with natural growth terms and measure data. Electron. J. Differ. Equ. Conf. 09 (2002), 183-202. MR 1976695 | Zbl 1109.35341
[21] León, S. Segura de: Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth. Adv. Differ. Equ. 8 (2003), 1377-1408. MR 2016651 | Zbl 1158.35365
[22] Trombetti, C.: Non-uniformly elliptic equations with natural growth in the gradient. Potential Anal. 18 (2003), 391-404. DOI 10.1023/A:1021884903872 | MR 1953268 | Zbl 1040.35010
[23] Zou, W.: Existence of solutions for a class of porous medium type equations with a lower order terms. J. Inequal. Appl. 2015 (2015), Article ID 294, 23 pages. DOI 10.1186/s13660-015-0799-9 | MR 3399257 | Zbl 1336.35167
Partner of
EuDML logo