[1] Alvino, A., Boccardo, L., Ferone, V., Orsina, L., Trombetti, G.:
Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl., IV. Ser. 182 (2003), 53-79.
DOI 10.1007/s10231-002-0056-y |
MR 1970464 |
Zbl 1105.35040
[2] Alvino, A., Ferone, V., Trombetti, G.:
A priori estimates for a class of nonuniformly elliptic equations. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 381-391.
MR 1645729 |
Zbl 0911.35025
[3] Ali, M. Ben Cheikh, Guibé, O.:
Nonlinear and non-coercive elliptic problems with integrable data. Adv. Math. Sci. Appl. 16 (2006), 275-297.
MR 2253236 |
Zbl 1215.35066
[4] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.:
An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273.
MR 1354907 |
Zbl 0866.35037
[7] Boccardo, L., Dall'Aglio, A., Orsina, L.:
Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 51-81.
MR 1645710 |
Zbl 0911.35049
[9] Croce, G.:
The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity. Rend. Mat. Appl., VII. Ser. 27 (2007), 299-314.
MR 2398428 |
Zbl 1147.35043
[10] Vecchio, T. Del, Posteraro, M. R.:
Existence and regularity results for nonlinear elliptic equations with measure data. Adv. Differ. Equ. 1 (1996), 899-917.
MR 1392010 |
Zbl 0856.35044
[11] Pietra, F. Della:
Existence results for non-uniformly elliptic equations with general growth in the gradient. Differ. Integral Equ. 21 (2008), 821-836.
MR 2483336 |
Zbl 1224.35117
[17] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Gauthier-Villars, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[19] Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales. Technical Report R93023, Laboratoire d'Analyse Numérique, Paris (1993), French.
[20] Porretta, A.:
Nonlinear equations with natural growth terms and measure data. Electron. J. Differ. Equ. Conf. 09 (2002), 183-202.
MR 1976695 |
Zbl 1109.35341
[21] León, S. Segura de:
Existence and uniqueness for $L^1$ data of some elliptic equations with natural growth. Adv. Differ. Equ. 8 (2003), 1377-1408.
MR 2016651 |
Zbl 1158.35365