Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$n$-exangulated category; generalized Auslander-Reiten-Serre duality; restricted Auslander bijection
Summary:
The aim of this article is to study the relative Auslander bijection in \hbox {$n$-exangulated} categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories.
References:
[1] Auslander, M.: Functors and morphisms determined by objects. Representation Theory of Algebras Lecture Notes in Pure Applied Mathematics 37. Marcel Dekker, New York (1978), 1-244. MR 0480688 | Zbl 0383.16015
[2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III: Almost split sequences. Commun. Algebra 3 (1975), 239-294. DOI 10.1080/00927877508822046 | MR 0379599 | Zbl 0331.16027
[3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV: Invariants given by almost split sequences. Commun. Algebra 5 (1977), 443-518. DOI 10.1080/00927877708822180 | MR 0439881 | Zbl 0396.16007
[4] Chen, X.-W.: The Auslander bijections and universal extensions. Ark. Mat. 55 (2017), 41-59. DOI 10.4310/ARKIV.2017.v55.n1.a2 | MR 3711141 | Zbl 1388.16018
[5] Dräxler, P., Reiten, I., Smalø, S. O., Solberg, Ø.: Exact categories and vector space categories. Trans. Am. Math. Soc. 351 (1999), 647-682. DOI 10.1090/S0002-9947-99-02322-3 | MR 1608305 | Zbl 0916.16002
[6] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories. J. Reine Angew. Math. 675 (2013), 101-120. DOI 10.1515/CRELLE.2011.177 | MR 3021448 | Zbl 1271.18013
[7] He, J., He, J., Zhou, P.: Auslander-Reiten-Serre duality for $n$-exangulated categories. Available at https://arxiv.org/abs/2112.00981 (2021), 24 pages.
[8] He, J., He, J., Zhou, P.: Higher Auslander-Reiten sequences via morphisms determined by objects. Available at https://arxiv.org/abs/2111.06522 (2021), 28 pages. MR 4585887
[9] He, J., Hu, J., Zhang, D., Zhou, P.: On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories. Ark. Mat. 60 (2022), 365-385. DOI 10.4310/ARKIV.2022.v60.n2.a8 | MR 4500371 | Zbl 7610639
[10] He, J., Zhou, P.: $n$-exact categories arising from $n$-exangulated categories. Available at https://arxiv.org/abs/2109.12954 (2021), 16 pages.
[11] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories. I: Definitions and fundamental properties. J. Algebra 570 (2021), 531-586. DOI 10.1016/j.jalgebra.2020.11.017 | MR 4188310 | Zbl 07290700
[12] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories. II: Constructions from $n$-cluster tilting subcategories. J. Algebra 594 (2022), 636-684. DOI 10.1016/j.jalgebra.2021.11.042 | MR 4355116 | Zbl 07459388
[13] Hu, J., Zhang, D., Zhou, P.: Two new classes of $n$-exangulated categories. J. Algebra 568 (2021), 1-21. DOI 10.1016/j.jalgebra.2020.09.041 | MR 4166049 | Zbl 1458.18006
[14] Iyama, O., Nakaoka, H., Palu, Y.: Auslander-Reiten theory in extriangulated categories. Available at https://arxiv.org/abs/1805.03776v2 (2019), 40 pages.
[15] Jasso, G.: $n$-abelian and $n$-exact categories. Math. Z. 283 (2016), 703-759. DOI 10.1007/s00209-016-1619-8 | MR 3519980 | Zbl 1356.18005
[16] Jiao, P.: The generalized Auslander-Reiten duality on an exact category. J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. DOI 10.1142/S0219498818502274 | MR 3895199 | Zbl 1407.16014
[17] Jiao, P.: Auslander's defect formula and a commutative triangle in an exact category. Front. Math. China 15 (2020), 115-125. DOI 10.1007/s11464-020-0814-4 | MR 4074348 | Zbl 1457.16014
[18] Liu, Y., Zhou, P.: Frobenius $n$-exangulated categories. J. Algebra 559 (2020), 161-183. DOI 10.1016/j.jalgebra.2020.03.036 | MR 4096714 | Zbl 1448.18022
[19] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. MR 3931945 | Zbl 1451.18021
[20] Ringel, C. M.: The Auslander bijections: How morphisms are determined by modules. Bull. Math. Sci. 3 (2013), 409-484. DOI 10.1007/s13373-013-0042-2 | MR 3128038 | Zbl 1405.16030
[21] Zhao, T.: Relative Auslander bijection in extriangulated categories. Available at www.researchgate.net/publication/367217942 (2021). MR 4586909
[22] Zhao, T., Tan, L., Huang, Z.: Almost split triangles and morphisms determined by objects in extriangulated categories. J. Algebra 559 (2020), 346-378. DOI 10.1016/j.jalgebra.2020.04.021 | MR 4097908 | Zbl 1440.18024
[23] Zhao, T., Tan, L., Huang, Z.: A bijection triangle in extriangulated categories. J. Algebra 574 (2021), 117-153. DOI 10.1016/j.jalgebra.2020.12.043 | MR 4210995 | Zbl 1459.18007
[24] Zheng, Q., Wei, J.: $(n+2)$-angulated quotient categories. Algebra Colloq. 26 (2019), 689-720. DOI 10.1142/S1005386719000506 | MR 4032973 | Zbl 1427.18006
Partner of
EuDML logo