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Abstract. The aim of this article is to study the relative Auslander bijection in
n-exangulated categories. More precisely, we introduce the notion of generalized Auslander-
Reiten-Serre duality and exploit a bijection triangle, which involves the generalized
Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the
subfunctor. As an application, this result generalizes the work by Zhao in extriangulated
categories.
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1. Introduction

The notion of extriangulated categories was introduced by Nakaoka-Palu (see [19]),

which can be viewed as a simultaneous generalization of exact categories and trian-

gulated categories. The data of such a category is a triplet (C ,E, s), where C is

an additive category, E : C op × C → Ab is an additive bifunctor and s assigns to

each δ ∈ E(C,A) a class of 3-term sequences with end terms A and C such that

certain axioms hold. Recently, Herschend-Liu-Nakaoka in [11] introduced the notion

of n-exangulated categories for any positive integer n. It is not only a higher di-

mensional analogue of extriangulated categories defined by Nakaoka-Palu (see [19]),

but also gives a common generalization of (n+ 2)-angulated categories in the sense

of Geiss-Keller-Oppermann (see [6]) and n-exact categories in the sense of Jasso,
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see [15]. However, there are some examples of n-exangulated categories which are

neither n-exact nor (n+ 2)-angulated, see [11], [12], [13], [18].

Functors and morphisms determined by objects were introduced by Auslander,

see [1]. These concepts generalize the previous work of Auslander and Reiten on

almost split sequences, see [2], [3]. Later, Ringel in [20] presented a survey of

these results, rearranged them as lattice isomorphisms (the Auslander bijections)

and added many examples. The concept of a morphism determined by an object

provides a method to construct or classify morphisms in a fixed category. Chen

in [4] investigated the Auslander bijection in a k-linear Hom-finite Krull-Schmidt

abelian category having Auslander-Reiten duality. Subsequently, Jiao in [16], [17]

considered a generalized version on exact categories. Recently, Zhao-Tan-Huang ex-

tended Chen and Jiao’s result to the extriangulated category C . Namely, let C be

an exangulated category, they studied the generalized Auslander-Reiten theory and

Auslander bijection in [22], [23], and He-He-Zhou showed that Zhao-Tan-Huang’s

results have the higher counterparts in [7], [8].

As the above related work extends to further generalization, Zhao in [21] studied

the Auslander bijection relative to an additive subfunctor in exangulated categories

by using the generalized Auslander-Reiten theory. Specifically, suppose that (C ,E, s)

is a k-linear Hom-finite Krull-Schmidt extriangulated category, where k is a field.

Zhao constructed a bijection triangle, which involves the generalized Auslander-

Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor.

Our main result shows that Zhao’s result has a higher counterpart.

Theorem 1.1 (see Theorem 4.13 for more detail). Assume that (C ,E, s) is

a k-linear Hom-finite Krull-Schmidt n-exangulated category. Let F be an additive

closed subfunctor of E and X ∈ CF, l. The bijection triangle

subEndC (τ−

F
X)opC (τ−

F
X,Y )

τ−

F
X [ → Y 〉

s|F-def

η
τ
−

F
X,Y

44✐✐✐✐✐✐✐✐✐✐✐✐
ξX,Y // subEndC (X)F(Y,X)

ΥX,Y

jj❯❯❯❯❯❯❯❯❯❯❯❯❯

is commutative. In particular, we get the restricted Auslander bijection at Y relative

to τ−
F
X

ητ−

F
X,Y : τ

−

F
X [ → Y 〉

s|F-def → subEndC (τ−

F
X)opC (τ−

F
X,Y ),

which is an isomorphism of posets.

This article is organized as follows. In Section 2, we review some elementary

definitions and facts on n-exangulated categories. In Section 3, we introduce the

notion of generalized Auslander-Reiten-Serre duality and study its basic properties.

In Section 4, we prove our main result.
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2. Preliminaries

Let C be a skeletally small additive category and n be a positive integer. Suppose

that C is equipped with an additive bifunctor E : C op × C → Ab, where Ab is

the category of abelian groups. Next we briefly recall some definitions and basic

properties of n-exangulated categories from [11]. We omit some details here, but the

reader can find them in [11].

For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is called an E-extension

or simply an extension. We also write such δ as AδC when we indicate A and C.

The zero element A0C = 0 ∈ E(C,A) is called the split E-extension. For any pair

of E-extensions AδC and A′δ′C′ , let δ ⊕ δ′ ∈ E(C ⊕ C′, A ⊕ A′) be the element

corresponding to (δ, 0, 0, δ′) through the natural isomorphism E(C ⊕ C′, A ⊕ A′) ≃

E(C,A) ⊕ E(C,A′)⊕ E(C′, A)⊕ E(C′, A′).

For any a ∈ C (A,A′) and c ∈ C (C′, C), E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈

E(C′, A) are simply denoted by a∗δ and c
∗δ, respectively.

Let AδC and A′δ′C′ be any pair of E-extensions. A morphism (a, c) : δ → δ′ of

extensions is a pair of morphisms a ∈ C (A,A′) and c ∈ C (C,C′) in C , satisfying the

equality a∗δ = c∗δ′.

Definition 2.1 ([11], Definition 2.7). Let CC be the category of complexes in C .

As its full subcategory, define C
n+2
C
to be the category of complexes in C whose

components are zero in the degrees outside of {0, 1, . . . , n + 1}. Namely, an object

in C
n+2
C
is a complex X• = {Xi, d

X
i } of the form

X0
dX0−→ X1

dX1−→ . . .
dXn−1

−→ Xn

dXn−→ Xn+1.

We write a morphism f• : X• → Y• simply f• = (f0, f1, . . . , fn+1), only indicating

the terms of degrees 0, . . . , n+ 1.

Definition 2.2 ([11], Definition 2.11). By Yoneda lemma, any extension δ ∈

E(C,A) induces natural transformations

δ♯ : C (−, C) ⇒ E(−, A) and δ♯ : C (A,−) ⇒ E(C,−).

For any X ∈ C , these (δ♯)X and δ
♯
X are given as

(1) (δ♯)X : C (X,C) → E(X,A) : f 7→ f∗δ,

(2) δ♯X : C (A,X) → E(C,X) : g 7→ g∗δ.

We simply denote (δ♯)X(f) and δ♯X(g) by δ♯(f) and δ
♯(g), respectively.
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Definition 2.3 ([11], Definition 2.9). Let C ,E, n be as before. Define a category

Æ := Æn+2
(C ,E) as follows.

(1) An object in Æn+2
(C ,E) is a pair 〈X•, δ〉 of X• ∈ C

n+2
C
and δ ∈ E(Xn+1, X0)

satisfying

(dX0 )∗δ = 0 and (dXn )∗δ = 0.

We call such a pair an E-attached complex of length n+ 2. We also denote it by

X0
dX0−→ X1

dX1−→ . . .
dXn−2

−→ Xn−1

dXn−1

−→ Xn

dXn−→ Xn+1
δ

99K .

(2) For such pairs 〈X•, δ〉 and 〈Y•, ̺〉, a morphism f• : 〈X•, δ〉 → 〈Y•, ̺〉 is defined

to be a morphism f• ∈ C
n+2
C

(X•, Y•) satisfying (f0)∗δ = (fn+1)
∗̺.

We use the same composition and identities as in C
n+2
C
.

Definition 2.4 ([11], Definition 2.13). An n-exangle is a pair 〈X•, δ〉 of X• ∈

C
n+2
C
and δ ∈ E(Xn+1, X0) which satisfies the following conditions. (1) The sequence

C (−, X0)
C (−,dX0 ) // . . .

C (−,dXn ) // C (−, Xn+1)
δ♯ // E(−, X0)

of functors C op → Ab is exact. (2) The sequence

C (Xn+1,−)
C (dXn ,−) // . . .

C (dX0 , −) // C (X0,−)
δ♯ // E(Xn+1,−)

of functors C → Ab is exact.

In particular any n-exangle is an object in Æ. A morphism of n-exangles simply

means a morphism in Æ. Thus, n-exangles form a full subcategory of Æ.

Let X• be a complex of length n+2 with fixed end-terms. In other words, X• sat-

isfies X0 = A and Xn+1 = C. We also write it as AX•C when we emphasize A and C.

Definition 2.5 ([11], Definition 2.22). Let s be a correspondence which asso-

ciates a homotopic equivalence class s(δ) = [AX•C ] to each extension δ = AδC .

Such s is called a realization of E in C
n+2
C
if it satisfies the following condition for

any s(δ) = [X•] and any s(̺) = [Y•].

(R0) For any morphism of extensions (a, c) : δ → ̺, there exists a morphism f• ∈

C
n+2
C

(X•, Y•) of the form f• = (a, f1, . . . , fn, c). Such f• is called a lift of (a, c).

In such a case, we simply say that “X• realizes δ” whenever they satisfy

s(δ) = [X•].

Moreover, a realization s of E is said to be exact if it satisfies the following

conditions.
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(R1) For any s(δ) = [X•], the pair 〈X•, δ〉 is an n-exangle.

(R2) For any A ∈ C , the zero element A00 = 0 ∈ E(0, A) satisfies

s(A00) = [A
idA−→ A→ 0 → . . .→ 0 → 0].

Dually, s(00A) = [0 → 0 → . . .→ 0 → A
idA−→ A] holds for any A ∈ C .

Note that the above condition (R1) does not depend on representatives of the

class [X•].

Definition 2.6 ([11], Definition 2.23). Let s be an exact realization of E.

(1) An n-exangle 〈X•, δ〉 is called an s-distinguished n-exangle if it satisfies

s(δ) = [X•]. We often simply say a distinguished n-exangle when s is clear from the

context.

(2) An object X• ∈ C
n+2
C
is called an s-conflation or simply a conflation if it

realizes some extension δ ∈ E(Xn+1, X0).

(3) A morphism f in C is called an s-inflation or simply an inflation if it admits

some conflation X• ∈ C
n+2
C
satisfying dX0 = f .

(4) A morphism g in C is called an s-deflation or simply a deflation if it admits

some conflation X• ∈ C
n+2
C
satisfying dXn = g.

Definition 2.7 ([11], Definition 2.27). For a morphism f• ∈ C
n+2
C

(X•, Y•) sat-

isfying f0 = idA for some A = X0 = Y0, its mapping cone M
f
• ∈ C

n+2
C
is defined to

be the complex

X1
d
Mf
0−→ X2 ⊕ Y1

d
Mf
1−→ X3 ⊕ Y2

d
Mf
2−→ . . .

d
Mf
n−1

−→ Xn+1 ⊕ Yn
d
Mf
n−→ Yn+1

where

d
Mf

0 =

[

−dX1
f1

]

, d
Mf

i =

[

−dXi+1 0

fi+1 dYi

]

(1 6 i 6 n− 1), d
Mf
n = [ fn+1 dYn ] .

The mapping cocone is defined dually, for morphisms h• in C
n+2
C

satisfying

hn+1 = id.

Definition 2.8 ([11], Definition 2.32). An n-exangulated category is a triplet

(C ,E, s) of an additive category C , an additive bifunctor E : C op ×C → Ab, and its

exact realization s in C
n+2
C
, satisfying the following conditions.

(EA1) Let A
f
→ B

g
→ C be any sequence of morphisms in C . If both f and g are

inflations, then so is g ◦ f . Dually, if f and g are deflations, then so is g ◦ f .

(EA2) For ̺ ∈ E(D,A) and c ∈ C (C,D), let A〈X•, c
∗̺〉C and A〈Y

·, ̺〉D be distin-

guished n-exangles. Then (idA, c) has a good lift f•, in the sense that its mapping

cone gives a distinguished n-exangle 〈Mf
• , (dX0 )∗̺〉.

(EA2op) Dual of (EA2).
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Remark 2.9.

(1) Note that in the case n = 1, a triplet (C ,E, s) is a 1-exangulated category if

and only if it is an extriangulated category, see [11], Proposition 4.3.

(2) From [11], Proposition 4.34 and [11], Proposition 4.5, we know that (n + 2)-

angulated in the sense of Geiss-Keller-Oppermann (see [6]) and n-exact cate-

gories in the sense of Jasso (see [15]) are n-exangulated categories. There are

some other examples of n-exangulated categories which are neither n-exact nor

(n+ 2)-angulated, see [11], [12], [13], [18].

The following are some very useful lemmas and they will be needed later on.

Lemma 2.10 ([11], Claim 2.15). Let C be an n-exangulated category, and

(2.1) A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→ An
αn−→ An+1

θ
99K

be a distinguished n-exangle in C . Then the following are equivalent:

(1) α0 is a split monomorphism (also known as a section);

(2) αn is a split epimorphism (also known as a retraction);

(3) θ = 0.

If a distinguished n-exangle (2.1) satisfies one of the above equivalent conditions, it

is called split.

Definition 2.11 ([24], Definition 3.14 and [18], Definition 3.2). Let (C ,E, s)

be an n-exangulated category. An object P ∈ C is called projective if for any

distinguished n-exangle

A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→ An
αn−→ An+1

δ
99K

and any morphism c in C (P,An+1), there exists a morphism b ∈ C (P,An) satisfying

αn ◦ b = c. The concept of injective objects is defined dually.

Lemma 2.12 ([18], Lemma 3.4). Let (C ,E, s) be an n-exangulated category.

Then the following statements are equivalent for an object P ∈ C .

(1) E(P,A) = 0 for any A ∈ C .

(2) P is projective.

(3) Any distinguished n-exangle A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→

An
αn−→ P

δ
99K splits.
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Lemma 2.13 ([24], Lemma 3.3). Let C be an n-exangulated category, and

X0
f0 //

a0

��

X1
f1 //

a1

��

X2
f2 //

a2

��

. . . // Xn

fn //

an

��

Xn+1

an+1

��

δ //❴❴❴

Y0
g0 // Y1

g1 // Y2
g2 // . . . // Yn

gn // Yn+1
η //❴❴❴

any morphism of distinguished n-exangles. Then the following are equivalent:

(1) There is a morphism h1 : X1 → Y0 such that h1f0 = a0.

(2) There is a morphism hn+1 : Xn+1 → Yn such that gnhn+1 = an+1.

(3) (a0)∗δ = (an+1)
∗η = 0.

3. The generalized Auslander-Reiten-Serre duality

Unless otherwise specified, we always assume that C is a k-linear Hom-finite Krull-

Schmidt n-exangulated category, where k is a field. We put D := Homk(−, k).

We denote by radC the Jacobson radical of C . Namely, radC is an ideal of C

such that radC (A,A) coincides with the Jacobson radical of the endomorphism ring

End(A) for any A ∈ C .

Assume that B is an additive category.

(a) A morphism αn : An → An+1 in B is called right almost split if

(1) αn is not a split epimorphism and

(2) for every f : Y → An+1 in B that is not a split epimorphism there exists

h : Y → An such that αnh = f , that is, h makes the triangle

Y

f

��

h

||①①
①①
①①
①①
①

An
αn // An+1

commutative.

(b) A morphism α0 : A0 → A1 in B is called left almost split if

(1) α0 is not a split monomorphism and

(2) for every g : A0 → Z in B that is not a split monomorphism there exists

h : A1 → Z such that g = hα0, that is, h makes the triangle

A0
α0 //

g

��

A1

h}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

Z

commutative.
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Next, let us recall the notion of Auslander-Reiten n-exangles in an n-exangulated

category.

Definition 3.1 ([9], Definition 3.1). A distinguished n-exangle

(3.1) A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→ An
αn−→ An+1

δ
99K

in C is called an Auslander-Reiten n-exangle if α0 is left almost split, αn is right

almost split and when for n > 2, α1, α2, . . . , αn−1 are in radC .

Lemma 3.2 ([9], Lemma 3.3). Let

A• : A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→ An
αn−→ An+1

δ
99K

be a distinguished n-exangle in C . Then the following statements are equivalent:

(1) A• is an Auslander-Reiten n-exangle;

(2) End(A0) is local, α1, α2, . . . , αn−1 are in radC and αn is right almost split;

(3) End(An+1) is local, α1, α2, . . . , αn−1 are in radC and α0 is left almost split.

The following lemma shows that a distinguished n-exangle in an equivalence class

can be chosen in a minimal way in a Krull-Schmidt n-exangulated category.

Lemma 3.3 ([10], Lemma 3.4). Let A0, An+1 be two objects in C . Then for

every equivalence class associated with E-extension δ = A0
δAn+1

, there exists a rep-

resentation

A• : A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→ An
αn−→ An+1

δ
99K

such that α1, α2, . . . , αn−1 are in radC . Moreover, A• is a direct summand of every

other elements in this equivalent class.

In what follows, let F ⊆ E be an additive sub-bifunctor. Then we have a∗δ ∈

F(C,A′) and c∗δ ∈ F(C′, A) for any a ∈ C (A,A′), c ∈ C (C′, C) and δ ∈ F(C,A).

For a realization s of E, define s|F to be the restriction of s onto F. Then s|F is an exact

realization of F. Moreover, the triplet (C ,F, s|F) satisfies the condition (EA2) and

(EA2op), see [11], Claim 3.9. Thus, we may speak of s|F-conflations (or s|F-inflations,

or s|F-deflations, respectively) and s|F-distinguished n-exangles as in Definition 2.6.

However, it is worth noting that (C ,F, s|F) is not an n-exangulated category in

general, see [11], Proposition 3.16 and [21], Example 2.12.

Definition 3.4. An s|F-distinguished n-exangle

A• : A0
α0−→ A1

α1−→ A2
α2−→ . . .

αn−2

−→ An−1
αn−1

−→ An
αn−→ An+1

δ
99K

in C is called Auslander-Reiten s|F-n-exangle if A• is an Auslander-Reiten n-exangle.
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We always assume that the following condition, analogous to the (WIC) condition

in [19], Condition 5.8, holds.

Condition 3.5. Let f ∈ C (A,B), g ∈ C (B,C) be any composable pair of

morphisms. Consider the following conditions.

(1) If g ◦ f is an s|F-deflation, then so is g.

(2) If g ◦ f is an s|F-inflation, then so is f .

Definition 3.6. (1) A morphism f : A→ B in C is called F-projectively trivial

if for each C ∈ C , the induced map F(f, C) : F(B,C) → F(A,C) is zero. Dually,

a morphism g : A → B in C is called F-injectively trivial if for each C ∈ C , the

induced map F(C, g) : F(C,A) → F(C,B) is zero.

(2) An object C ∈ C is called F-projectively trivial if the identity morphism idC
is F-projectively trivial. Dually, an object C ∈ C is called F-injectively trivial if the

identity morphism idC is F-injectively trivial.

For an F-projectively trivial morphism, we have the following equivalent charac-

terization.

Lemma 3.7. Let f ∈ C (A,B) be a morphism. Then the following statements

are equivalent.

(1) f is F-projectively trivial.

(2) f factors through any s|F-deflation g : Xn → B.

(3) For any s|F-distinguished n-exangle X• : X0
α0−→ X1

α1−→ X2
α2−→ . . .

αn−1

−→

Xn
g

−→ B
θ

99K, if there exists a morphism of s|F-distinguished n-exangles

(3.2) X ′
• : X0

α′

0 // X ′
1

α′

1 //

ϕ1

��

X ′
2

α′

2 //

ϕ2

��

. . .
α′

n−1 // X ′
n

g′ //

ϕn

��

A

f

��

f∗θ //❴❴❴

X• : X0
α0 // X1

α1 // X2
α2 // · · ·

αn−1 // Xn

g // B
θ //❴❴❴ ,

then the top s|F-distinguished n-exangle X
′
• is split.

P r o o f. (1) ⇔ (3) ⇒ (2) It is straightforward to verify.

(2) ⇒ (3) For any s|F-distinguished n-exangle

X• : X0
α0−→ X1

α1−→ X2
α2−→ . . .

αn−1

−→ Xn
g

−→ B
θ

99K,

consider the diagram (3.2). By the assumption (2), f factors through g, and

so α′
0 is a split monomorphism by Lemma 2.13. Thus, f

⋆θ = 0, that is, the top

s|F-distinguished n-exangle X
′
• is split. �
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Construction 3.8. Let A and B be two objects in C . We denote by PF(A,B)

(or IF(A,B)) the set of F-projectively trivial (or F-injectively trivial, respectively)

morphisms from A to B. The stable category C (or costable category C ) of C is

defined as follows: the category whose objects are objects of C and whose morphisms

are elements of C (A,B) = C (A,B)/PF(A,B) (or C (A,B) = C (A,B)/IF(A,B),

respectively). Given a morphism f : A → B in C , we denote by f the image of f

in C (or f the image of f in C , respectively).

Given an Auslander-Reiten s|F-n-exangle

X• : X0
α0−→ X1

α1−→ X2
α2−→ . . .

αn−1

−→ Xn
αn−→ Xn+1

γ
99K .

Put D = Homk(−, k). Since X• is not split, there exists some ϕ ∈ DF(Xn+1, X0)

such that ϕ(γ) 6= 0. Next, for each object Y in C , we can get a non-degenerate

k-bilinear map

〈−,−〉Y : C (Y,X0)× F(Xn+1, Y ) → k, (f, δ) 7→ ϕ(f∗δ).

In fact, for any non-split s|F-distinguished n-exangle

Y• : Y
β0
−→ Y1

β1
−→ Y2

β2
−→ . . .

βn−1

−→ Yn
βn
−→ Xn+1

δ
99K,

since X• is an Auslander-Reiten s|F-n-exangle, we obtain the commutative diagram

Y• : Y
β0 //

f

��✤
✤
✤

Y1
β1 //

��✤
✤
✤

. . .
βn−2 // Yn−1

βn−1 //

��✤
✤
✤

Yn
βn //

fn

��

Xn+1
δ //❴❴❴

X• : X0
α0 // X1

α1 // . . .
αn−2 // Xn−1

αn−1 // Xn

αn // Xn+1
γ //❴❴❴

by the dual of [11], Proposition 3.6. Hence, f∗δ = γ and f ∈ C (Y,X0). Then we

have that 〈f, δ〉Y = ϕ(f∗δ) = ϕ(γ) 6= 0.

On the other hand, suppose 0 6= f ∈ C (Y,X0), then f : Y → X0 representing f is

not s|F-injective, and there exist Z ∈ C and ε ∈ F(Z, Y ) such that f∗ε is non-split

by the dual of Lemma 3.7. Since X• is an Auslander-Reiten s|F-n-exangle, by [11],

Proposition 3.6 we have the commutative diagram

Z• : Y
η0 //

f

��

Z1
η1 //

��

. . .
ηn−2 // Zn−1

ηn−1 //

��

Zn
ηn //

fn

��

Z
ε //❴❴❴❴

U• : X0
ζ0 // U1

ζ1 // . . .
ζn−2 // Un−1

ζn−1 // Un
ζn // Z

f∗ε //❴❴❴❴

X• : X0
α0 // X1

α1 //

h1

OO

. . .
αn−2 // Xn−1

αn−1 //

OO✤
✤
✤

Xn

αn //

OO✤
✤
✤

Xn+1

h

OO✤
✤
✤

γ //❴❴❴ .

Then γ = h∗(f∗ε) = f∗h
∗ε, therefore, we have that 〈f, h∗ε〉Y =ϕ(f∗(h

∗ε))=ϕ(γ) 6=0.
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Thus, we have the following proposition.

Proposition 3.9. Let X• : X0
α0−→ X1

α1−→ X2
α2−→ . . .

αn−1

−→ Xn
αn−→ Xn+1

γ
99K be

an Auslander-Reiten s|F-n-exangle in C and ϕ ∈ DF(Xn+1, X0) with ϕ(γ) 6= 0.

(1) For each Y ∈ C , we have a non-degenerate k-bilinear map

〈−,−〉Y : C (Y,X0)× F(Xn+1, Y ) → k, (f, δ) 7→ ϕ(f∗δ).

Moreover, the induced map

ϕXn+1,Y : C (Y,X0) → DF(Xn+1, Y ), f 7→ 〈f,−〉Y ,

is a natural isomorphism and functorial in Y ∈ C with ϕ = ϕXn+1,X0
(IdX0

).

(2) For each Y ∈ C , we have a non-degenerate k-bilinear map

Y 〈−,−〉 : F(Y,X0)× C (Xn+1, Y ) → k, (δ, g) 7→ ϕ(g∗δ).

Moreover, the induced map

ψY,X0
: C (Xn+1, Y ) → DF(Y,X0), g 7→Y 〈−, g〉,

is a natural isomorphism and functorial in Y ∈ C with ϕ = ψXn+1,X0
(IdXn+1

).

P r o o f. (1) The functoriality of ϕXn+1
: C (−, X0) → DF(Xn+1,−) follows from

a direct verifition.

(2) It is similar to (1). �

Proposition 3.10. Let Xn+1 (or Y0) be a non-s|F-projective (or non-s|F-injective,

respectively) indecomposable object in C .

(1) Assume that ϕXn+1,− : C (−, X ′) → DF(Xn+1,−) is an isomorphism of functors

for someX ′ ∈ C , which has a non-s|F-injective indecomposable direct summand,

then there exists an Auslander-Reiten s|F-n-exangle ending at Xn+1 in C .

(2) Assume that ψ−,Y0
: C (Y ′,−) → DF(−, Y0) is an isomorphism of functors for

some Y ′ ∈ C , which has a non-s|F-projective indecomposable direct summand,

then there exists an Auslander-Reiten s|F-n-exangle starting at Y0 in C .

P r o o f. (1) For each object and each morphism f : U → X ′, by the naturality

of ϕXn+1,−, we obtain the commutative diagram

C (X ′, X ′)
ϕXn+1,X′

//

C (f,X′)

��

DF(Xn+1, X
′)

DF(Xn+1,f)

��
C (U,X ′)

ϕXn+1,U
// DF(Xn+1, U).
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Set ϕ = ϕXn+1,X′(IdX′), then we have

ϕXn+1,U (f) = DF(Xn+1, f)(ϕ) = ϕ ◦ F(Xn+1, f).

It follows that ϕXn+1,U (f)(θ) = ϕ(f∗θ) for each θ ∈ F(Xn+1, U).

Let X0 be a non-s|F-injective indecomposable direct summand of X
′. Then the

isomorphism ϕXn+1,X0
induces a non-degenerate k-bilinear map

〈−,−〉X0
: C (X0, X

′)× F(Xn+1, X0) → k, (f, δ) 7→ ϕ(f∗δ).

Take

Ξ = {f ∈ C (X0, X
′) : f is a non-split monomorphism}.

Since X0 is non-s|F-injective, we have IF(X0, X
′) ⊆ Ξ. Hence Ξ := Ξ/IF(X0, X

′)

is properly contained in C (X0, X
′). Then there exists a non-split F-extension δ ∈

F(Xn+1, X0) of the form

X• : X0
α0−→ X1

α1−→ X2
α2−→ . . .

αn−1

−→ Xn
αn−→ Xn+1

δ
99K

such that 〈h, δ〉X0
= ϕ(h∗δ) = 0 for each non-split monomorphisms h : X0 → X ′

in Ξ. Here, we may assume that αi ∈ radC for i ∈ {1, 2, . . . , n− 1} by Lemma 3.3.

Next, we claim that the morphism α0 is left almost split. Suppose that s : X0 → V

is not a split monomorphism, then for each t : V → X ′, the morphism t ◦ s lies in Ξ.

Hence, we have 〈t ◦ s, δ〉X0
= 0. Consider the non-degenerate k-bilinear map

〈−,−〉V : C (V,X ′)× F(Xn+1, V ) → k, (f, β) 7→ ϕ(f∗β),

which is induced by ϕXn+1,V . Hence, we have

〈t, s∗δ〉V = ϕ(t∗(s∗δ)) = 〈t ◦ s, δ〉X0
= 0.

This implies that the F-extension s∗δ splits by the non-degeneracy of 〈−,−〉V . By

Lemma 2.13, the morphism s factors through α0. This shows the morphism α0 is left

almost split. Therefore, X• is an Auslander-Reiten s|F-n-exangle from Lemma 3.2

since End(Xn+1) is local.

(2) It is similar to (1). �

We define two full subcategories of C as

CF,r = {X ∈ C : the functor DF(X,−) : C → mod k is representable},

CF,l = {X ∈ C : the functor DF(−, X) : C → mod k is representable}.
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Then we have the following result.

Proposition 3.11. Let X and Y be indecomposable objects in C .

(1) IfX is non-s|F-projective, then X ∈ CF,r if and only if there exists an Auslander-

Reiten s|F-n-exangle ending at X .

(2) If Y is non-s|F-injective, then Y ∈ CF,l if and only if there exists an Auslander-

Reiten s|F-n-exangle starting at Y .

P r o o f. It follows from Propositions 3.9 and 3.10. �

Based on these two full subcategories CF,r and CF,l, next we will construct two

functors τF : CF,r → CF,l and τ
−
F
: CF,l → CF,r.

(1) For X ∈ CF,r, we define τFX to be an object in C that contains no injective

summands such that there exists an isomorphism

ϕX,− : C (−, τFX) → DF(X,−).

Then τF gives a map from CF,r to C .

(2) For each Y in CF,l, we define τ
−
F
Y to be an object in C that contains no

projective summands such that there exists an isomorphism of functors

ψ−,Y : C (τ−
F
Y,−) → DF(−, Y ).

Then τ−
F
gives a map from CF,l to C .

Let CF,r be the image of CF,r under the canonical functor C → C and CF,l be the

image of CF,l under the canonical functor C → C . One can check that the above

procedures induce two functors, which we still denote by τF and τ
−
F
. That is, we have

τF : CF,r → CF,l and τ−
F
: CF,l → CF,r.

Remark 3.12.

(1) If X,Y ∈ CF,r and X ∼= Y in C , then τFX ∼= τFY in C . If X ∈ CF,l and X ∼= Y

in C , then τ−
F
X ∼= τ−

F
Y in C .

(2) If Xn+1 ∈ CF,r, then Xn+1
∼= τ−

F
τFXn+1 in CF,r. If Y0 ∈ CF,l, then Y0 ∼= τFτ

−
F
Y0

in CF,l.

Theorem 3.13. The functors

τF : CF,r → CF,l and τ−
F
: CF,l → CF,r

are quasi-inverse to each other.
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P r o o f. We only prove that ν : τ−
F
τF → IdCF,r

is a natural isomorphism. Firstly,

we prove that ν is a natural transformation. For each f : Xn+1 → Un+1 in CF,r,

consider the following two diagrams,

C (τFXn+1, τFXn+1)
ϕXn+1,τFXn+1 //

(1)C (τFXn+1,τF(f))

��

DF(Xn+1, τFXn+1)

DF(f,τnXn+1)

��

(2)

C (τ−
F
τFXn+1, Xn+1)

ψXn+1,τFXn+1oo

C (τ−

F
τFXn+1,f)

��
C (τFXn+1, τFUn+1)

ϕUn+1,τFXn+1 // DF(Un+1, τFXn+1) C (τ−
F
τFXn+1, Un+1)

ψUn+1,τFXn+1oo

and

C (τFUn+1, τFUn+1)
ϕUn+1,τFUn+1 //

(3)C (τn(f),τFUn+1)

��

DF(Un+1, τFUn+1)

DF(Un+1,τF(f))

��

(4)

C (τ−
F
τFUn+1, Un+1)

ψUn+1,τFUn+1oo

C (τ−

F
τF(f),Un+1)

��
C (τFXn+1, τFUn+1)

ϕUn+1,τFXn+1 // DF(Un+1, τFXn+1) C (τ−
F
τFXn+1, Un+1).

ψUn+1,τFXn+1oo

The square (1) commutes by the definition of τF(f) and the square (2) commutes

since the isomorphism ψ−,τFXn+1
is natural. Similarly, the square (3) commutes since

the isomorphism ϕ−,τFUn+1
is natural and the square (4) commutes by the definition

of τ−
F
τF(f).

By a diagram chasing, we have

τF(f) = ϕ−1
Un+1,τFXn+1

(ψUn+1,τFXn+1
(f ◦ νXn+1

))

and

τF(f) = ϕ−1
Un+1,τFXn+1

(ψUn+1,τFXn+1
(νUn+1

◦ τ−
F
τF(f))).

Thus, f ◦ νXn+1
= νUn+1

◦ τ−
F
τF(f). It follows that ν is a natural transformation.

Now we prove that νXn+1
is an isomorphism for eachXn+1 ∈ CF,r. We may assume

that Xn+1 is indecomposable and non-s|F-projective in C . Put

α = ψτ−

F
τFXn+1,τFXn+1

(Idτ−

F
τFXn+1

) ∈ DF(τ−
F
τFXn+1, τFXn+1)

and

β = ϕXn+1,τFXn+1
(IdτFXn+1

) ∈ DF(Xn+1, τFXn+1).
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Thus, we have β = ψXn+1,τFXn+1
(νXn+1

) by the definition of νXn+1
. Consider the

commutative diagram

C (τ−
F
τFXn+1, τ

−
F
τFXn+1)

ψ
τ
−

F
τFXn+1,τFXn+1//

C (τ−

F
τFXn+1,ϑXn+1

)

��

DF(τ−
F
τFXn+1, τFXn+1)

DF(ϑXn+1
,τFXn+1)

��
C (τ−

F
τFXn+1, Xn+1)

ψXn+1,τFXn+1 // DF(Xn+1, τFXn+1),

and note that

ψτ−

F
τFXn+1,τFXn+1

(Idτ−

F
τFXn+1

) = α and C (τ−
F
τFXn+1, ϑXn+1

)(Idτ−

F
τFXn+1

) = νXn+1
.

Then we have

β = DF(νXn+1
, τFXn+1)(α) = α ◦ F(νXn+1

, τFXn+1).

Since Xn+1 is non-s|F-projective in C , X0
∼= τFXn+1 in C is nonzero and then

non-s|F-injective in C . Thus, there is an isomorphism ϕXn+1,− : C (−, X0) →

DF(Xn+1,−). By Proposition 3.10, there exists an Auslander-Reiten s|F-n-exangle

X• : X0 → X1 → X2 → . . .→ Xn → Xn+1
η

99K .

By Proposition 3.9, we have a natural isomorphism

ϕ′
Xn+1,− : C (−, X0) → DF(Xn+1,−)

such that ϕ′
Xn+1,X0

(IdX0
)(η) 6= 0. Setting β′ := ϕ′

Xn+1,X0
(IdX0

), we have β′(η) 6= 0.

By Yoneda’s lemma, there exists some k : X0 → τFXn+1 such that C (−, k) =

ϕ−1
Xn+1,−

◦ ϕ′
Xn+1,−

. We thus, obtain

β′ = ϕ′
Xn+1,X0

(IdX0
) = (ϕXn+1,X0

◦ C (−, s))(IdX0
) = ϕXn+1,X0

(k).

Consider the commutative diagram

C (τFXn+1, τFXn+1)
ϕXn+1,τFXn+1 //

C (k,τFXn+1)

��

DF(Xn+1, τFXn+1)

DF(Xn+1,k)

��
C (X0, τFXn+1)

ϕXn+1,X0 // DF(Xn+1, X0).
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Since ϕXn+1,τFXn+1
(IdτFXn+1

) = β and C (s, τFXn+1)(IdτFXn+1
) = k, we have

β′ = DF(Xn+1, k)(β) = β ◦ F(Xn+1, k) = α ◦ F(νXn+1
, τFXn+1) ◦ F(Xn+1, k).

Thus,

0 6= β′(η) = α(ν∗Xn+1
(k∗η)) = α(k∗(ν

∗
Xn+1

η)),

which implies that the distinguished s|F-n-exangle

U• : X0 → U1 → U2 → . . .→ Un → τ−
F
τFXn+1

ν∗

Xn+1
η

99K

is non-split. We claim that νXn+1
: τ−

F
τFXn+1 → Xn+1 is a split epimorphism in C .

Otherwise, suppose that νXn+1
: τ−

F
τFXn+1 → Xn+1 is not a split epimorphism in C .

Since X• is an Auslander-Reiten s|F-n-exangle, we have the commutative diagram

U• : X0
// U1

//

��

. . . // Un−1
//

��

Un //

��

τ−n τnXn+1

νXn+1

��zzt
t
t
t
t

ν∗

Xn+1
η
//

X• : X0
// X1

// . . . // Xn−1
// Xn

// Xn+1
η //❴❴❴❴ .

By Lemma 2.13, the top distinguished n-exangle is split, which is a contradiction.

Thus, νXn+1
is an isomorphism in C F,r since τ

−
F
τFXn+1

∼= Xn+1 in C F,r by Re-

mark 3.12. �

Definition 3.14. This sextuple {CF,l,CF,r, ϕ, ψ, τF, τ
−
F
} is called the generalized

Auslander-Reiten-Serre duality on C .

Remark 3.15.

(1) If E = F, then we put Cl = CF,l, Cr = CF,r, τ = τE, τ
− = τ−

E
.

(2) If E = F and C = Cl = Cr, then the generalized Auslander-Reiten-Serre duality

is exactly the Auslander-Reiten-Serre duality in the sense of [7].

(3) If C is an extriangulated category, then Definition 3.14 coincides with the def-

inition of generalized Auslander-Reiten-Serre duality of extriangulated cate-

gory, cf. [21]. Moreover, if E = F and C = Cl = Cr, then the generalized

Auslander-Reiten-Serre duality is exactly the Auslander-Reiten-Serre duality in

the sense of [14].

Set

λX :=ϕX,τFX(IdτFX) ∈ DF(X, τFX), µX := ψ−1
X,τFX

(λX) ∈ C (τ−
F
τFX,X),

κX :=ψτ−

F
X,X(Idτ−

F
X) ∈ DF(τ−

F
X,X), νX := ϕ−1

τ−

F
X,X

(κX) ∈ C (X, τFτ
−
F
X).

Let us end this section with the following key lemma.
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Lemma 3.16. Let X0 → X1 → X2 → . . . → Xn−1 → Xn → Y
δ

99K be an

s|F-distinguished n-exangle in C .

(1) For any X ∈ CF,r, we have the commutative diagram

DF(X,X0)
D(δ♯)X // DC (X,Y )

C (X0, τFX)
δ♯τFX //

ϕX,X0

OO

F(Y, τFX),

D(ψY,τFX
C (µX ,Y ))

OO

which is natural in both δ and X .

(2) For any X ∈ CF,l, we have the commutative diagram

DF(Y,X)
Dδ♯X // DC (X0, X)

C (τ−
F
X,Y )

(δ♯)
τ
−

F
X

//

ψY,X

OO

F(τ−
F
X,X0),

D(ϕ
τ
−

F
X,X0

C (X0,νX ))

OO

which is natural in both δ and X .

P r o o f. Since the proof is very similar to [21], Lemma 3.9, we omit it. For more

details, one also can see [23]. �

4. A bijection triangle

In this section, we will show that there is a bijective triangle which involves the

generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection

relative to the subfunctor F. Firstly, we recall the concept of morphisms being

determined by objects.

Definition 4.1 ([1]). Let C be an additive category. Let f ∈ C (X,Y ) and

C ∈ C . The morphism f is called right C-determined and C is called a right

determiner of f , if the following condition is satisfied: each g ∈ C (L, Y ) factors

through f , provided that for each h ∈ C (C,L) the morphism g ◦h factors through f .

Definition 4.2 ([20]). Two morphisms f : X → Y and f ′ : X ′ → Y are called

right equivalent if f factors through f ′ and f ′ factors through f , i.e., we have the

commutative diagram

X

f

��~~⑤
⑤
⑤
⑤

X ′
f ′

// Y X ′.
f ′

oo

aa❈
❈
❈
❈

One can make some easy observations.
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Remark 4.3.

(a) A right equivalence relation is an equivalence relation on the set of all morphisms

ending in some object Y ∈ C . Put

[f〉 := {the right equivalence class of a morphism f ∈ C (X,Y )}.

(b) Assume that f and f ′ are right equivalent. Then f is right C-determined if

and only if so is f ′. We say that [f〉 is right C-determined if a representative

element f is right C-determined.

(c) Assume that f and f ′ are right equivalent. Then ImC (C, f)= ImC (C, f ′).

(d) If f and f ′ are right C-determined, then f and f ′ are right equivalent if and

only if ImC (C, f)= ImC (C, f ′).

Definition 4.4 ([20]). Suppose f1 ∈ C (X1, Y ) and f2 ∈ C (X2, Y ). Then put

[f1〉 6 [f2〉 if and only if f1 factors through f2.

We define two sets as follows:

(1) [ → Y 〉 := {the set of right equivalence classes of morphisms to Y }. Then 6

induces a poset relation on [ → Y 〉.

(2) C [ → Y 〉 := {the subset of [ → Y 〉 consisting of all right equivalence classes

that are right C-determined}.

We denote by SubEndC (C)opC (C, Y ) the poset formed by EndC (C)op-submodules

of C (C, Y ), ordered by the inclusion. Then the map

ηC,Y : [ → Y 〉 → SubEndC (C)opC (C, Y ), [f〉 7→ ImC (C, f)

is well-defined by Remark 4.3 (c).

The restriction of ηC,Y on
C [ → Y 〉 is injective and reflects the orders, that is, for

two classes [f1〉, [f2〉 ∈
C [ → Y 〉, [f1〉 6 [f2〉 if and only if ηC,Y ([f1〉) ⊆ ηC,Y ([f2〉).

Remark 4.5. Since each EndC (C)op-submodule of C (C, Y ) corresponds to

a unique EndC (C)op-submodule of the set C (C, Y ) containing P(C, Y ), the poset

SubEndC (C)opC (C, Y ) is viewed as a subset of SubEndC (C)opC (C, Y ).

In the following, we are going to consider n-exangulated categories. Under Con-

dition 3.5, put

[ → Y 〉
s|F-def := {[f〉 ∈ [ → Y 〉 : f is a s|F-deflation}.

Note that PF(C, Y ) ⊆ ImC (C, f) for any [f〉 ∈ [ → Y 〉def . Then we have the map

ηC,Y : [ → Y 〉
s|F-def → SubEndC (C)opC (C, Y ), [f〉 7→ ImC (C, f)/PF(C, Y ).

Put
C [ → Y 〉

s|F-def := [ → Y 〉
s|F-def ∩

C [ → Y 〉.
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Then we have the map

ηC,Y : C [ → Y 〉
s|F-def → SubEndC (C)opC (C, Y ), [f〉 7→ ImC (C, f)/PF(C, Y ).

Definition 4.6. If the map ηC,Y : C [ → Y 〉
s|F-def → SubEndC (C)opC (C, Y ) above

is surjective, then we say that the restricted Auslander bijection at Y relative to C

holds.

Lemma 4.7. The correspondence

ξX,Y : [ → Y 〉
s|F-def → SubEndC (X)F(Y,X), [f〉 7→ Im δ♯fX

is a well-defined map.

P r o o f. We show that ξX,Y ([f〉) is independent of the choice of the representa-

tive elements. In fact, let f1 ∈ C (Z1, Y ) and f2 ∈ C (Z2, Y ) be two s|F-deflations,

which are right equivalent. Then there are two s|F-distinguished n-exangles

A0 → A1 → A2 → . . .→ An−1 → Z1
f1
−→ Y

δ1
99K

and

B0 → B1 → B2 → . . .→ Bn−1 → Z2
f2
−→ Y

δ2
99K .

Thus, we obtain the commutative diagram

A0
//

k0
��✤
✤
✤

A1
//

��✤
✤
✤

A2
//

��✤
✤
✤

. . . // An−1
//

��✤

✤
Z1

f1 //

��

Y
δ1 //❴❴❴

B0
//

l0
��✤
✤
✤

B1
//

��✤
✤
✤

B2
//

��✤
✤
✤

. . . // Bn−1
//

��✤

✤
Z2

f2 //

��

Y
δ2 //❴❴❴

A0
// A1

// A2
// . . . // An−1

// Z1
f1 // Y

δ1 //❴❴❴

by the dual of [11], Proposition 3.6. Applying C (−X) to the commutative diagram

above, we have the commutative diagram

C (A0, X)
δ
♯
1X //

�

F(Y,X)

C (B0, X)
δ
♯
2X //

�

C (k0,X)

OO

F(Y,X)

C (A0, X)
δ
♯
1X //

C (l0,X)

OO

F(Y,X).

Hence, we have Im δ♯1X = Im δ♯2X . �
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We denote by X [ → Y 〉
s|F-def the subset of [ → Y 〉

s|F-def consisting of those classes

[f〉 that have a representative element f such that there exists an s|F-distinguished

n-exangle

X0 → X1 → X2 → . . .→ Xn−1 →W → fY
δf
99K

with X0 ∈ addX . In this case, C (X0, X) is a finitely generated projective EndC (X)-

module, and hence, ξX,Y ([f〉) = Im δ♯fX is a finitely generated EndC (X)-module.

Put

subEndC (X)F(Y,X) := {the subset of SubEndC (X)F(Y,X) consisting of finitely

generated EndC (X)-modules}.

Before we begin the following proposition, let us recall the definition of anti-

isomorphism. A map between posets is called anti-isomorphism if it is a bijection

and reverses the orders of the two posets.

Proposition 4.8. The correspondence

ξX,Y : X [ → Y 〉
s|F-def → subEndC (X)F(Y,X), [f〉 7→ Im δ♯fX

is a well-defined bijection. Moreover, it is an anti-isomorphism of posets.

P r o o f. We know that the ξX,Y is a well-defined map by Lemma 4.7.

Step 1 : We will prove that ξX,Y is injective. Let

A0 → A1 → A2 → . . .→ An−1 → Z1
f1
−→ Y

δ1
99K

and

B0 → B1 → B2 → . . .→ Bn−1 → Z2
f2
−→ Y

δ2
99K

be two s|F-distinguished n-exangles satisfying A0, B0 ∈ addX . Assume that

Im δ♯1X = Im δ♯2X . Since B0 ∈ addX , C (B0, X) ∈ EndC (X)-proj, and hence,

we have the commutative diagram of exact rows

C (A0, X)
δ
♯
1X //

�

Im δ♯1X

C (B0, X)
δ
♯
2X //

s

OO✤
✤
✤

Im δ♯2X .

By the Yoneda lemma, there exists ω ∈ C (A0, B0) such that C (ω‘, X) = s. So

δ♯2X = δ♯1XC (ω,X). Thus, for any f ∈ C (B0, X), we have

f∗δ2 = δ♯2X(f) = (δ♯1XC (ω,X))(f) = δ♯1X(fω) = (fω)∗δ1 = f∗ω∗δ1.
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Moreover, since B0 ∈ addX , we have pi = idB0
, where p : X → B0 is the natural

projection and i : B0 → X is the natural injection. Thus, we get

δ2 = (idB0
)∗δ2 = (pi)∗δ2 = p∗(i∗δ2) = p∗(i∗ω∗δ1)

= (p∗i∗)(ω∗δ1) = (idB0
)∗(ω∗δ1) = ω∗δ1.

By (R0), we can obtain that (ω, idY ) has a lift ω• = (ω, ω1, ω2, . . . , ωn, idY ), that is,

there exists the commutative diagram of s|F-distinguished n-exangles

A0
//

ω

��

A1
//

ω1

��✤
✤
✤

A2
//

ω2

��✤
✤
✤

. . . // An−1
//

ωn−1

��✤

✤
Z1

f1 //

ωn

��✤
✤
✤ Y

δ1 //❴❴❴

B0
// B1

// B2
// . . . // Bn−1

// Z2
f2 // Y

δ2 //❴❴❴ .

In particular, f1 factors through f2. Dually one can prove f2 factors through f1.

This shows that f2 and f1 are right equivalent and hence [f1〉 = [f2〉.

Step 2 : We will prove that ξX,Y is surjective. Let F be any finitely generated

EndC (X)-submodule of F(Y,X). Then there exists a morphism h : C (A0, X) →

F(Y,X) with A0 ∈ addX and Imh = F . By Yoneda’s lemma, we obtain a natural

isomorphism

F(Y,A0) → HomEndC (X)(C (A0, X),F(Y,X)), δ 7→ δ♯X .

It follows that there exists an F-extension δ ∈ F(Y,A0) such that δ
♯
X = h. Let

A0 → A1 → A2 → . . .→ An−1 → Z1
f

−→ Y
δ

99K

be an s|F-distinguished n-exangle. Then ξX,Y ([f〉) = Im δ♯X = Imh = F .

Moreover, ξX,Y is an anti-isomorphism of posets. Indeed, consider two s|F-

distinguished n-exangles

A0 → A1 → A2 → . . .→ An−1 → Z1
f1
−→ Y

δ1
99K

and

B0 → B1 → B2 → . . .→ Bn−1 → Z2
f2
−→ Y

δ2
99K,

where A0, B0 ∈ addX . If [f1〉 6 [f2〉, then there exists a morphism g : Z1 → Z2

such that f1 = f2g. Thus, we obtain the commutative diagram

A0
//

g0

��✤
✤
✤

A1
//

��✤
✤
✤

A2
//

��✤
✤
✤

. . . // An−1
//

��✤

✤
Z1

f1 //

g

��

Y
δ1 //❴❴❴

B0
// B1

// B2
// . . . // Bn−1

// Z2
f1 // Y

δ2 //❴❴❴

by the dual of [11], Proposition 3.6. Then δ2 = (g0)∗δ1, hence we have Im δ♯2X ⊆

Im δ♯1X . �
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Assume C has a generalized Auslander-Reiten-Serre duality.

Lemma 4.9. Let X ∈ CF,l. There is a bijection

ΥX,Y : subEndC (X)F(Y,X) → subEndC (X)opC (τ−
F
X,Y )

such that for any finitely generated EndC (X)-submodule F of F(Y,X), ΥX,Y (F )=H

is defined by an exact sequence

0 // H // C (τ−
F
X,Y )

D(i)ψY,X// DF // 0,

where i : F → F(Y,X) is the inclusion. The bijection ΥX,Y is an anti-isomorphism

of posets.

P r o o f. Since the proof is very similar to [22], Lemma 5.1, we omit it. Moreover,

one also can see [4], Lemma 4.2. �

For any X ∈ CF,l, since τ
−
F
is an equivalence, we can identify via τ−

F
the

EndC (τ−
F
X)op-module structure on C (τ−

F
X,Y ) with the corresponding EndC (X)op-

module structure. Hence, we can identify the poset SubEndC (τ−

F
X)opC (τ−

F
X,Y ) with

SubEndC (X)opC (τ−
F
X,Y ). Under the identification, we have the bijection

ΥX,Y : subEndC (X)F(Y,X) → subEndC (τ−

F
X)opC (τ−

F
X,Y ).

Proposition 4.10. Let X ∈ CF,l. Then we have the commutative triangle

subEndC (τ−

F
X)opC (τ−

F
X,Y )

[ → Y 〉
s|F-def

η
τ
−

F
X,Y

55❧❧❧❧❧❧❧❧❧❧❧❧❧
ξX,Y // subEndC (X)F(Y,X).

ΥX,Y

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

P r o o f. For any [f〉 ∈ [ → Y 〉
s|F-def, there is an s|F-distinguished n-exangle

X0 → X1 → X2 → . . .→ Xn−1 → Xn
f

−→ Y
δ

99K .

We obtain an exact sequence

C (τ−
F
X,Xn)

C (τ−

F
X,f)

// C (τ−
F
X,Y )

(δ♯)
τ
−

F
X

// E(τ−
F
X,X0).
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By definition, the following two equations hold:

ητ−

F
X,Y ([f〉) = ImC (τ−

F
X, f) = Ker(δ♯)τ−

F
X and ξX,Y ([f〉) = Im δ♯X .

By Lemma 3.16, we have the exact sequence

0 // Ker(δ♯)τ−

F
X

// C (τ−
F
X,Y )

D(i)ψY,X // D Im δ♯X
// 0,

where i : Im δ♯X → F(Y,X) is the inclusion. Hence ΥX,Y (Im δ♯X) = Ker(δ♯)τ−

F
X by

Lemma 4.9. Thus, we have ητ−

F
X,Y = ΥX,Y ξX,Y . �

Let (C ,E, s) be an n-exangulated category. Let F be an additive subfunctor of F

and

X• : X0
λ0−→ X1 → λ1−→X2 → λ2−→ . . .→ λn−1−→Xn → λn−→Xn+199K

an arbitrary s|F-conflation. Recall from [5] that F is closed if the two sequences

F(−, X0)
(λ0)∗−→ F(−, X1)

(λ1)∗−→ F(−, X2)

and

F(Xn+1,−)
(λn)

∗

−→ F(Xn,−)
(λn−1)

∗

−→ F(Xn−1,−)

are exact.

Moreover, we have the following equivalent statements.

Lemma 4.11 ([11], Proposition 3.16). For any additive subfunctor F ⊆ E, the

following statements are equivalent.

(1) (C ,F, s|F) is an n-exangulated category.

(2) s|F-inflations are closed under composition.

(3) s|F-deflations are closed under composition.

(4) F ⊆ E is closed.

Proposition 4.12. Let

X
α

−→ X1
α1−→ X2

α2−→ . . .
αn−2

−→ Xn−1
αn−1

−→ Z
β

−→ Y
δ

99K

be an s|F-distinguished n-exangle with X ∈ CF,l. Then

(1) β is right τ−
F
X-determined.

(2) Let F be an additive closed subfunctor of E. If α is in radC , then β is right

C-determined for some C ∈ C if and only if τ−
F
X ∈ addC. Consequently, we

have X [ → Y 〉
s|F-def =

τ−

F
X [ → Y 〉

s|F-def.
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P r o o f. (1) Let f ∈ C (L, Y ) be such that for each g ∈ C (τ−
F
X,L), the morphism

f ◦g factors through β. We need to show that the morphism f factors through β. In-

deed, by (EA2), we have the commutative diagram of an s|F-distinguished n-exangle

X // Y1 //

��✤
✤

✤
✤

. . . // Yn−1
//

��✤
✤
✤
✤

Yn //

��✤
✤

✤

✤ τ−
F
X
g
��

	

��✂
✂
✂
✂
✂

(f◦g)∗δ //❴❴❴

L
f��

X // X1
// . . . // Xn−1

// Z
β

// Y
δ //❴❴❴❴ .

Then we obtain (f ◦ g)∗δ = 0 by Lemma 2.13. Since X ∈ CF,l, there exists a natural

isomorphism

ψ−,X : C (τ−
F
X,−) → DF(−, X).

Take ε := ψτ−

F
X,X(Idτ−

F
X). By the naturality of ψ−,X , we have the commutative

diagram

C (τ−
F
X, τ−

F
X)

ψ
τ
−

F
X,X

//

C (τ−

F
X,g)

��

DF(τ−
F
X,X)

DF(g,X)

��
C (τ−

F
X,L)

ψL,X // DF(L,X).

So

ψL,X(g) = DF(g,X)(ε) = ε ◦ F(g,X)

and hence,

ψL,X0
(g)(f∗δ) = ε(g∗f∗δ) = ε((f ◦ g)∗δ) = 0.

Note that ψL,X(g) runs over all maps in DF(L,X), when g runs over all morphisms

in C (τ−
F
X,L). It follows that f∗δ = 0, thus, the morphism f factors through β by

Lemma 2.13, that is, we have the commutative diagram

τ−
F
X
g
��

��✡✡
✡✡
✡✡
✡✡
✡

L
f��	{{✈

✈
✈

X // X1
// . . . // Xn−1

// Z
β

// Y
δ //❴❴❴ .

Therefore, α is right τ−
F
X-determined.

(2) The sufficiency follows from (1). It suffices to prove the necessity. We will

show that each indecomposable direct summand X ′ of X satisfies τ−
F
X ′ ∈ addC.

Firstly, we claim that the composition of s|F-inflations X
′ ι
−→ X

α
−→ X1 is not
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a split monomorphism, where ι is the natural inclusion. Otherwise, since F is closed,

αι is an s|F-inflation by Lemma 4.11. If αι is a split monomorphism, then there

exists a morphism t : X1 → X ′, such that tαι = 1. We have tαι ∈ radC since α is

in radC . This shows 1− tαι is invertible, which is a contradiction since 1− tαι = 0.

Moreover, X ′ is not an injective object by the dual of [18], Lemma 3.4. Hence, by

Lemma 3.11 there is an Auslander-Reiten s|F-n-exangle

X ′ α′

−→W1
α′

1−→W2 → . . .
α′

n−1

−→ Wn
β′

−→ τ−
F
X ′ σ

99K .

We have the commutative diagram by [11], Proposition 3.6

X ′ α′

//

ι

��

W1

α′

1 //

i1

��

. . .
α′

n−2 // Wn−1

α′

n−1 //

in−1

��✤
✤
✤

Wn

β′

//

in

��✤
✤
✤ τ−

F
X ′

in+1

��✤
✤
✤

σ //❴❴❴

X
α // X1

α1 // . . .
αn−2 // Xn−1

αn−1 // Z
β // Y

δ //❴❴❴❴

with ι∗σ = i∗n+1δ.

Suppose τ−
F
X ′ 6∈ addC. Then any f ∈ C (C, τ−

F
X ′) is not a split epimorphism

and hence factors through β′, that is, β′g = f . Thus, we have

in+1f = in+1(β
′g) = β(ing).

Moreover, since β is right C-determined, there exists h ∈ C (τ−
F
X ′, Z) such that

in+1 = βh. Consider the commutative diagram by (EA2)

X
γ0 // W ′

1

γ1 //

i1

��✤
✤
✤

. . .
γn−2 // W ′

n−1

γn−1 //

in−1

��✤
✤
✤

W ′
n

γn //

in

��✤
✤
✤

τ−
F
X ′

in+1

��

h

	
{{✈✈
✈✈
✈✈
✈✈

i∗n+1δ //❴❴❴

X
α // X1

α1 // . . .
αn−2 // Xn−1

αn−1 // Z
β // Y

δ //❴❴❴❴ .

By Lemma 2.13, we have that idX factors through γ0 and hence, γ0 is a split

monomorphism. In particular, ι∗σ = i∗n+1δ = 0. Consider the commutative dia-

gram by (EA2op)

X ′ α′

//

ι

��

W1

α′

1 //

��✤
✤
✤

. . .
α′

n−2 // Wn−1

α′

n−1 //

in−1

��✤
✤
✤

Wn

β′

//

in
��✤
✤
✤ τ−

F
X ′ σ //❴❴❴

X
α // W ′′

1

α1 // . . .
αn−2 // W ′′

n−1

αn−1 // W ′′
n

β // τ−
F
X ′ ι∗σ //❴❴❴ .

By Lemma 2.13, the condition ι∗σ = 0 implies that there exists a morphism ω ∈

C (W1, X) satisfying ι = ωα′. Since ι is a split monomorphism, α′ is also a split

monomorphism, which is a contradiction. Thus we have τ−
F
X ′ ∈ addC. �
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We are ready to state and prove our main result.

Theorem 4.13. Let F be an additive closed subfunctor of E and let X ∈ CF,l.

The bijection triangle

subEndC (τ−

F
X)opC (τ−

F
X,Y )

τ−

F
X [ → Y 〉

s|F-def

η
τ
−

F
X,Y

33❤❤❤❤❤❤❤❤❤
ξX,Y // subEndC (X)F(Y,X)

ΥX,Y
kk❱❱❱❱❱❱❱❱❱❱❱

is commutative. In particular, we get the restricted Auslander bijection at Y relative

to τ−
F
X ,

ητ−

F
X,Y : τ

−

F
X [ → Y 〉

s|F-def → subEndC (τ−

F
X)opC (τ−

F
X,Y ),

which is an isomorphism of posets.

P r o o f. It follows from Propositions 4.10 and 4.12. �

Remark 4.14. Theorem 4.13, when C is an extriangulated category, is just

Theorem 4.11 in [21].

Let (C ,Σ,Θ) be an (n + 2)-angulated category. Put EΣ = C (−,Σ−) : C op ×

C → Ab and, for any δ ∈ E(Y,X) = C (Y,ΣX), take an (n+ 2)-angle

X → X1 → X2 → . . .→ Xn → Y
δ

−→ ΣX

and set

s(δ) = [X → X1 → X2 → . . .→ Xn → Y ],

then (C ,EΣ, s) is an n-exangulated category, see [11], Proposition 4.5. In this case,

each morphism in C is an s-deflation, hence τ
−X [ → Y 〉def =

τ−X [ → Y 〉. Note that

PEΣ
= 0 in C , thus C (X,Y ) = C (X,Y ) for any X,Y ∈ C .

In particular,

CEΣ,l = {X ∈ C : the functor DC (−,ΣX) : C → mod k is representable}.

Corollary 4.15. Let C is a k-linear Hom-finite Krull-Schmidt (n+ 2)-angulated

category and let X ∈ CC (−,Σ−),l. The bijection triangle

subEndC (τ−X)opC (τ−X,Y )

X [ → Y 〉 = τ−X [ → Y 〉

ητ−X,Y
33❣❣❣❣❣❣❣❣❣❣❣

ξX,Y // subEndC (X)C (Y,ΣX)

ΥX,Y
kk❲❲❲❲❲❲❲❲❲❲❲❲

is commutative. In particular, we get the restricted Auslander bijection at Y relative

to τ−X ,

ητ−X,Y : τ
−X [ → Y 〉 → subEndC (τ−X)opC (τ−X,Y ),

which is an isomorphism of posets.
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Remark 4.16. Corollary 4.15, when n = 1, is just Corollary 4.12 in [21].
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