Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
non-Newtonian fluid; MHD equation; decay estimate; large initial perturbation
Summary:
We show the upper and lower bounds of convergence rates for strong solutions of the 3D non-Newtonian flows associated with Maxwell equations under a large initial perturbation.
References:
[1] Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, London (1974).
[2] Bae, H.-O., Jin, B. J.: Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations. J. Differ. Equations 209 (2005), 365-391. DOI 10.1016/j.jde.2004.09.011 | MR 2110209 | Zbl 1062.35058
[3] Benvenutti, M. J., Ferreira, L. C. F.: Existence and stability of global large strong solutions for the Hall-MHD system. Differ. Integral Equ. 29 (2016), 977-1000. MR 3513590 | Zbl 1389.35255
[4] Gunzburger, M. D., Ladyzhenskaya, O. A., Peterson, J. S.: On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations. J. Math. Fluid Mech. 6 (2004), 462-482. DOI 10.1007/s00021-004-0107-9 | MR 2101892 | Zbl 1064.76118
[5] Guo, B., Zhu, P.: Algebraic $L^2$ decay for the solution to a class system of non-Newtonian fluid in $\mathbb R^n$. J. Math. Phys. 41 (2000), 349-356. DOI 10.1063/1.533135 | MR 1738602 | Zbl 0989.35108
[6] Kang, K., Kim, J.-M.: Existence of solutions for the magnetohydrodynamics with power- law type nonlinear viscous fluid. NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 11, 24 pages. DOI 10.1007/s00030-019-0557-7 | MR 3924622 | Zbl 1417.76045
[7] Karch, G., Pilarczyk, D.: Asymptotic stability of Landau solutions to Navier-Stokes system. Arch. Ration. Mech. Anal. 202 (2011), 115-131. DOI 10.1007/s00205-011-0409-z | MR 2835864 | Zbl 1256.35061
[8] Karch, G., Pilarczyk, D., Schonbek, M. E.: $L^2$-asymptotic stability of singular solutions to the Navier-Stokes system of equations in $\mathbb{R}^3$. J. Math. Pures Appl. (9) 108 (2017), 14-40. DOI 10.1016/j.matpur.2016.10.008 | MR 3660767 | Zbl 1368.35207
[9] Kim, J.-M.: Temporal decay of strong solutions to the magnetohydrodynamics with power-law type nonlinear viscous fluid. J. Math. Phys. 61 (2020), Article ID 011504, 6 pages. DOI 10.1063/1.5128708 | MR 4047930 | Zbl 1432.76289
[10] Kim, J.-M.: Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space. AIMS Math. 6 (2021), 13423-13431. DOI 10.3934/math.2021777 | MR 4332321 | Zbl 07533493
[11] Kozono, H.: Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations. J. Funct. Anal. 176 (2000), 153-197. DOI 10.1006/jfan.2000.3625 | MR 1784412 | Zbl 0970.35106
[12] Miyakawa, T.: On upper and lower bounds of rates of decay for nonstationary Navier- Stokes flows in the whole space. Hiroshima Math. J. 32 (2002), 431-462. DOI 10.32917/hmj/1151007491 | MR 1954053 | Zbl 1048.35063
[13] Nečasová, Š., Penel, P.: $L^2$ decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space. Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 4181-4191. DOI 10.1016/S0362-546X(01)00535-1 | MR 1972358 | Zbl 1042.76504
[14] Oliver, M., Titi, E. S.: Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in $\mathbb R^n$. J. Funct. Anal. 172 (2000), 1-18. DOI 10.1006/jfan.1999.3550 | MR 1749867 | Zbl 0960.35081
[15] Samokhin, V. N.: A magnetohydrodynamic-equation system for a nonlinearly viscous liquid. Differ. Equations 27 (1991), 628-636 translation from Differ. Uravn. 27 1991 886-896. MR 1117118 | Zbl 0795.76094
[16] Schonbek, M. E.: Large time behaviour of solutions to the Navier-Stokes equations. Commun. Partial Differ. Equations 11 (1986), 733-763. DOI 10.1080/03605308608820443 | MR 0837929 | Zbl 0607.35071
[17] Secchi, P.: $L^2$ stability for weak solutions of the Navier-Stokes equations in $\mathbb R^3$. Indiana Univ. Math. J. 36 (1987), 685-691. DOI 10.1512/iumj.1987.36.36039 | MR 0905619 | Zbl 0635.35076
[18] Wiegner, M.: Decay results for weak solutions of the Navier-Stokes equations on $\mathbb R^n$. J. Lond. Math. Soc., II. Ser. 35 (1987), 303-313. DOI 10.1112/jlms/s2-35.2.303 | MR 0881519 | Zbl 0652.35095
[19] Wilkinson, W. L.: Non-Newtonian Fluids: Fluid Mechanics, Mixing and Heat Transfer. International Series of Monographs on Chemical Engineering 1. Pergamon Press, New York (1960). MR 0110392 | Zbl 0124.41802
[20] Xie, Q., Guo, Y., Dong, B.-Q.: Upper and lower convergence rates for weak solutions of the 3D non-Newtonian flows. J. Math. Anal. Appl. 494 (2021), Article ID 124641, 21 pages. DOI 10.1016/j.jmaa.2020.124641 | MR 4161399 | Zbl 1457.76027
[21] Zhou, Y.: Asymptotic stability for the 3D Navier-Stokes equations. Commun. Partial Differ. Equations 30 (2005), 323-333. DOI 10.1081/PDE-200037770 | MR 2131057 | Zbl 1142.35548
[22] Zhou, Y.: Asymptotic stability for the Navier-Stokes equations in $L^n$. Z. Angew. Math. Phys. 60 (2009), 191-204. DOI 10.1007/s00033-008-7045-y | MR 2486152 | Zbl 1293.76049
Partner of
EuDML logo