[4] Candido, L.:
On the distortion of a linear embedding of $C(K)$ into a $C_0(\Gamma,X)$ space. J. Math. Anal. Appl. 459 (2018), 1201-1207 \99999DOI99999 10.1016/j.jmaa.2017.11.039 .
MR 3732581 |
Zbl 1383.46020
[5] Candido, L., Galego, E. M.:
How far is $C_0(\Gamma, X)$ with $\Gamma$ discrete from $C_0(K,X)$ spaces?. Fundam. Math. 218 (2012), 151-163 \99999DOI99999 10.4064/fm218-2-3 .
MR 2957688 |
Zbl 1258.46002
[6] Candido, L., Galego, E. M.:
Embeddings of $C(K)$ spaces into $C(S,X)$ spaces with distortion strictly less than 3. Fundam. Math. 220 (2013), 83-92 \99999DOI99999 10.4064/fm220-1-5 .
MR 3011771 |
Zbl 1271.46005
[7] Candido, L., Galego, E. M.:
How does the distortion of linear embedding of $C_0(K)$ into $C_0(\Gamma,X)$ spaces depend on the height of $K$?. J. Math. Anal. Appl. 402 (2013), 185-190 \99999DOI99999 10.1016/j.jmaa.2013.01.017 .
MR 3023248 |
Zbl 1271.46006
[8] Candido, L., Galego, E. M.:
How far is $C(\omega)$ from the other $C(K)$ spaces?. Stud. Math. 217 (2013), 123-138 \99999DOI99999 10.4064/sm217-2-2 .
MR 3117334 |
Zbl 1288.46013
[9] Cengiz, B.:
On topological isomorphisms of $C_{0}(X)$ and the cardinal number of $X$. Proc. Am. Math. Soc. 72 (1978), 105-108 \99999DOI99999 10.1090/S0002-9939-1978-0493291-0 .
MR 0493291 |
Zbl 0397.46022
[10] Cerpa-Torres, M. F., Rincón-Villamizar, M. A.:
Isomorphisms from extremely regular subspaces of $C_0(K)$ into $C_0(S,X)$ spaces. Int. J. Math. Math. Sci. 2019 (2019), Article ID 7146073, 7 pages \99999DOI99999 10.1155/2019/7146073 .
MR 4047607 |
Zbl 1487.46025
[11] Chu, C.-H., Cohen, H. B.:
Small-bound isomorphisms of function spaces. Function spaces Lecture Notes in Pure and Applied Mathematics 172. Marcel Dekker, New York (1995), 51-57 \99999MR99999 1352220 .
MR 1352220 |
Zbl 0888.46029
[12] Cohen, H. B.:
A bound-two isomorphism between $C(X)$ Banach spaces. Proc. Am. Math. Soc. 50 (1975), 215-217 \99999DOI99999 10.1090/S0002-9939-1975-0380379-5 .
MR 0380379 |
Zbl 0317.46025
[13] Dostál, P., Spurný, J.:
The minimum principle for affine functions and isomorphisms of continuous affine function spaces. Arch. Math. 114 (2020), 61-70 \99999DOI99999 10.1007/s00013-019-01371-0 .
MR 4049228 |
Zbl 1440.46003
[14] Fleming, R. J., Jamison, J. E.:
Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129. Chapman & Hall/CRC, Boca Raton (2003),\99999DOI99999 10.1201/9781420026153 .
MR 1957004 |
Zbl 1011.46001
[15] Galego, E. M., Rincón-Villamizar, M. A.:
Weak forms of Banach-Stone theorem for $C_0(K,X)$ spaces via the $\alpha$th derivatives of $K$. Bull. Sci. Math. 139 (2015), 880-891 \99999DOI99999 10.1016/j.bulsci.2015.04.002 .
MR 3429497 |
Zbl 1335.46005
[16] Gordon, Y.:
On the distance coefficient between isomorphic function spaces. Isr. J. Math. 8 (1970), 391-397 \99999DOI99999 10.1007/BF02798685 .
MR 0270128 |
Zbl 0205.12401
[17] Hess, H. U.:
On a theorem of Cambern. Proc. Am. Math. Soc. 71 (1978), 204-206 \99999DOI99999 10.1090/S0002-9939-1978-0500490-8 .
MR 0500490 |
Zbl 0394.46010
[18] Ludvík, P., Spurný, J.:
Isomorphisms of spaces of continuous affine functions on compact convex sets with Lindelöf boundaries. Proc. Am. Math. Soc. 139 (2011), 1099-1104 \99999DOI99999 10.1090/S0002-9939-2010-10534-8 .
MR 2745661 |
Zbl 1225.46005
[19] Lukeš, J., Malý, J., Netuka, I., Spurný, J.:
Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory. de Gruyter Studies in Mathematics 35. Walter de Gruyter, Berlin (2010),\99999DOI99999 10.1515/9783110203219 .
MR 2589994 |
Zbl 1216.46003
[20] Morrison, T. J.:
Functional Analysis: An Introduction to Banach Space Theory. Pure and Applied Mathematics. A Wiley Series of Texts, Monographs and Tracts. Wiley, Chichester (2001),\99999MR99999 1885114 .
MR 1885114 |
Zbl 1005.46004
[21] Rondoš, J., Spurný, J.:
Isomorphisms of subspaces of vector-valued continuous functions. Acta Math. Hung. 164 (2021), 200-231 \99999DOI99999 10.1007/s10474-020-01107-5 .
MR 4264226 |
Zbl 1488.46072
[22] Rondoš, J., Spurný, J.:
Small-bound isomorphisms of function spaces. J. Aust. Math. Soc. 111 (2021), 412-429 \99999DOI99999 10.1017/S1446788720000129 .
MR 4337946 |
Zbl 1493.46016
[23] Semadeni, Z.:
Banach Spaces of Continuous Functions. Vol. 1. Monografie matematyczne 55. PWN - Polish Scientific Publishers, Warszawa (1971).
MR 0296671 |
Zbl 0225.46030