[1] Aruna, A. S., Ramachandramurthy, V., Kavitha, N.:
Non-linear Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with variable heat source. J. Indian Math. Soc., New Ser. 88 (2021), 8-22.
DOI 10.18311/jims/2021/22782 |
MR 4213956 |
Zbl 07425434
[2] Bhattacharyya, S. P., Jena, S. K.:
Thermal instability of a horizontal layer of micropolar fluid with heat source. Proc. Indian Acad. Sci., Math. Sci. 93 (1984), 13-26 \99999DOI99999 10.1007/BF02861831 .
DOI 10.1007/BF02861831 |
MR 0796769 |
Zbl 0566.76009
[4] Chandrasekhar, S.:
Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics. Clarendon Press, Oxford (1961).
MR 0128226 |
Zbl 0142.44103
[5] Clever, R. M.:
Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Z. Angew. Math. Phys. 28 (1977), 585-597.
DOI 10.1007/BF01601337 |
Zbl 0382.76038
[6] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.:
Buoyancy Induced Flows and Transport. Hemisphere Publishing Corporation, Washington (1988).
Zbl 0699.76001
[7] Gireesha, B. J., Kumar, P. B. Sampath, Mahanthesh, B., Shehzad, S. A., Abbasi, F. M.:
Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Sci. Technol. 30 (2018 ), 257-264.
DOI 10.1007/s12217-018-9594-9
[8] Kulacki, F. A., Goldstein, R. J.:
Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55 (1972), 271-287.
DOI 10.1017/S0022112072001855
[9] Makinde, O. D., Olajuwon, B. I., Gbolagade, A. W.: Adomian decomposition approach to a boundary layer flow with thermal radiation past a moving vertical porous plate. Int. J. Appl. Math. Mech. 3 (2007), 62-70.
[10] Manjunatha, S., Kuttan, B. Ammani, Jayanthi, S., Chamkha, A., Gireesha, B. J.:
Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon 5 (2019), Article ID e01469, 16 pages.
DOI 10.1016/j.heliyon.2019.e01469
[11] Maruthamanikandan, S., Thomas, N. M., Mathew, S.:
Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation. J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages.
DOI 10.1088/1742-6596/1139/1/012024
[16] Ramachandramurthy, V., Aruna, A. S.: Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source. Math. Sci. Int. Research J. 6 (2017), 92-98.
[17] Ramachandramurthy, V., Aruna, A. S., Kavitha, N.:
Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source. Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages.
DOI 10.1007/s40819-020-0781-1 |
MR 4062157 |
Zbl 1461.76160
[18] Ramachandramurthy, V., Uma, D., Kavitha, N.: Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source. Int. J. Appl. Eng. Research 14 (2019), 2126-2133.
[21] Roberts, P. H.:
Convection in horizontal layers with internal heat generation: Theory. J. Fluid Mech. 30 (1967), 33-49.
DOI 10.1017/S0022112067001284
[22] Severin, J., Herwig, H.:
Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach. Z. Angew. Math. Phys. 50 (1999), 375-386.
DOI 10.1007/PL00001494 |
MR 1697713 |
Zbl 0926.76045
[23] Sharma, R. C., Sharma, M.:
Effect of suspended particles on couple-stress fluid heated from below in the presence of rotation and magnetic field. Indian J. Pure Appl. Math. 35 (2004), 973-989.
Zbl 1115.76327
[24] Siddheshwar, P. G.:
Thermorheological effect on magnetoconvection in weak electrically conducting fluids under 1g and $\mu_g$. Pramana J. Phys. 62 (2004), 61-68.
DOI 10.1007/BF02704425
[25] Siddheshwar, P. G.:
A series solution for the Ginzburg-Landau equation with a time-periodic coefficient. Appl. Math., Irvine 1 (2010), 542-554.
DOI 10.4236/am.2010.16072
[26] Siddheshwar, P. G., Bhadauria, B. S., Mishra, P., Srivastava, A. K.:
Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model. Int. J. Non-Linear Mech. 47 (2012), 418-425.
DOI 10.1016/j.ijnonlinmec.2011.06.006
[29] Siddheshwar, P. G., Ramachandramurthy, V., Uma, D.:
Rayleigh-Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. Int. J. Eng. Sci. 49 (2011), 1078-1094.
DOI 10.1016/j.ijengsci.2011.05.020 |
Zbl 1423.76504
[30] Siddheshwar, P. G., Titus, P. S.:
Nonlinear Rayleigh-Bénard convection with variable heat source. J. Heat Transfer 135 (2013), Article ID 122502, 12 pages.
DOI 10.1115/1.4024943
[31] Somerscales, E. F. C., Dougherty, T. S.:
Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below. J. Fluid Mech. 42 (1970), 755-768.
DOI 10.1017/S0022112070001593
[35] Torrance, K. E., Turcotte, D. L.:
Thermal convection with large viscosity variations. J. Fluid Mech. 47 (1971), 113-125.
DOI 10.1017/S002211207100096X
[36] Tritton, D. J., Zarraga, M. N.:
Convection in horizontal layers with internal heat generation: Experiments. J. Fluid Mech. 30 (1967), 21-31.
DOI 10.1017/S0022112067001272
[37] Watson, E. L.: Rheological behaviour of apricot purees and concentrates. Can. Agric. Eng. 10 (1968), 8-11.
[38] Yusuf, A. B., Ajibade, O. A.:
Combined effects of variable viscosity, viscous dissipation and thermal radiation on unsteady natural convection couette flow through a vertical porous channel. FUDMA J. Sci. 4 (2020), 135-150.
DOI 10.33003/fjs-2020-0402-208