Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Rayleigh-Bénard convection; heat source/sink; Boussinesq-Stokes suspension; Boussinesq approximation; Lorenz model
Summary:
The generalized Lorenz model for non-linear stability of Rayleigh-Bénard magneto-convection is derived in the present paper. The Boussinesq-Stokes suspension fluid in the presence of variable viscosity (temperature-dependent viscosity) and internal heat source/sink is considered in this study. The influence of various parameters like suspended particles, applied vertical magnetic field, and the temperature-dependent heat source/sink has been analyzed. It is found that the basic state of the temperature gradient, viscosity variation, and the magnetic field can be conveniently expressed using the half-range Fourier cosine series. This facilitates to determine the analytical expression of the eigenvalue (thermal Rayleigh number) of the problem. From the analytical expression of the thermal Rayleigh number, it is evident that the Chandrasekhar number, internal Rayleigh number, Boussinesq-Stokes suspension parameters, and the thermorheological parameter influence the onset of convection. The non-linear theory involves the derivation of the generalized Lorenz model which is essentially a coupled autonomous system and is solved numerically using the classical Runge-Kutta method of the fourth order. The quantification of heat transfer is possible due to the numerical solution of the Lorenz system. It has been shown that the effect of heat source and temperature-dependent viscosity advance the onset of convection and thereby give rise to enhancing the heat transport. The Chandrasekhar number and the couple-stress parameter have stabilizing effects and reduce heat transfer. This problem has possible applications in the context of the magnetic field which influences the stability of the fluid.
References:
[1] Aruna, A. S., Ramachandramurthy, V., Kavitha, N.: Non-linear Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with variable heat source. J. Indian Math. Soc., New Ser. 88 (2021), 8-22. DOI 10.18311/jims/2021/22782 | MR 4213956 | Zbl 07425434
[2] Bhattacharyya, S. P., Jena, S. K.: Thermal instability of a horizontal layer of micropolar fluid with heat source. Proc. Indian Acad. Sci., Math. Sci. 93 (1984), 13-26 \99999DOI99999 10.1007/BF02861831 . DOI 10.1007/BF02861831 | MR 0796769 | Zbl 0566.76009
[3] Busse, F. H., Frick, H.: Square-pattern convection in fluids with strongly temperature-dependent viscosity. J. Fluid Mech. 150 (1985), 451-465. DOI 10.1017/S0022112085000222 | Zbl 0588.76073
[4] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics. Clarendon Press, Oxford (1961). MR 0128226 | Zbl 0142.44103
[5] Clever, R. M.: Heat transfer and stability properties of convection rolls in an internally heated fluid layer. Z. Angew. Math. Phys. 28 (1977), 585-597. DOI 10.1007/BF01601337 | Zbl 0382.76038
[6] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.: Buoyancy Induced Flows and Transport. Hemisphere Publishing Corporation, Washington (1988). Zbl 0699.76001
[7] Gireesha, B. J., Kumar, P. B. Sampath, Mahanthesh, B., Shehzad, S. A., Abbasi, F. M.: Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity. Microgravity Sci. Technol. 30 (2018 ), 257-264. DOI 10.1007/s12217-018-9594-9
[8] Kulacki, F. A., Goldstein, R. J.: Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55 (1972), 271-287. DOI 10.1017/S0022112072001855
[9] Makinde, O. D., Olajuwon, B. I., Gbolagade, A. W.: Adomian decomposition approach to a boundary layer flow with thermal radiation past a moving vertical porous plate. Int. J. Appl. Math. Mech. 3 (2007), 62-70.
[10] Manjunatha, S., Kuttan, B. Ammani, Jayanthi, S., Chamkha, A., Gireesha, B. J.: Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection. Heliyon 5 (2019), Article ID e01469, 16 pages. DOI 10.1016/j.heliyon.2019.e01469
[11] Maruthamanikandan, S., Thomas, N. M., Mathew, S.: Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation. J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages. DOI 10.1088/1742-6596/1139/1/012024
[12] McKenzie, D. P., Roberts, J. M., Weiss, N. O.: Convection in the earth's mantle: Towards a numerical simulation. J. Fluid Mech. 62 (1974), 465-538. DOI 10.1017/S0022112074000784 | Zbl 0277.76087
[13] Meenakshi, N., Siddheshwar, P. G.: A theoretical study of enhanced heat transfer in nanoliquids with volumetric heat source. J. Appl. Math. Comput. 57 (2018), 703-728. DOI 10.1007/s12190-017-1129-9 | MR 3790197 | Zbl 1394.35368
[14] Palm, E.: Nonlinear thermal convection. Annual Review of Fluid Mechanics. Volume 7 Annual Reviews, Palo Alto (1975), 39-61. DOI 10.1146/annurev.fl.07.010175.000351 | Zbl 0358.76038
[15] Platten, J. K., Legros, J. C.: Convection in Liquids. Springer, Berlin (1984). DOI 10.1007/978-3-642-82095-3 | Zbl 0545.76048
[16] Ramachandramurthy, V., Aruna, A. S.: Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source. Math. Sci. Int. Research J. 6 (2017), 92-98.
[17] Ramachandramurthy, V., Aruna, A. S., Kavitha, N.: Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source. Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages. DOI 10.1007/s40819-020-0781-1 | MR 4062157 | Zbl 1461.76160
[18] Ramachandramurthy, V., Uma, D., Kavitha, N.: Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source. Int. J. Appl. Eng. Research 14 (2019), 2126-2133.
[19] Riahi, N.: Nonlinear convection in a horizontal layer with an internal heat source. J. Phys. Soc. Jap. 53 (1984), 4169-4178. DOI 10.1143/JPSJ.53.4169 | MR 0779210
[20] Riahi, N.: Convection in a low Prandtl number fluid with internal heating. Int. J. Non-Linear Mech. 21 (1986), 97-105. DOI 10.1016/0020-7462(86)90016-8 | MR 0840767 | Zbl 0592.76049
[21] Roberts, P. H.: Convection in horizontal layers with internal heat generation: Theory. J. Fluid Mech. 30 (1967), 33-49. DOI 10.1017/S0022112067001284
[22] Severin, J., Herwig, H.: Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach. Z. Angew. Math. Phys. 50 (1999), 375-386. DOI 10.1007/PL00001494 | MR 1697713 | Zbl 0926.76045
[23] Sharma, R. C., Sharma, M.: Effect of suspended particles on couple-stress fluid heated from below in the presence of rotation and magnetic field. Indian J. Pure Appl. Math. 35 (2004), 973-989. Zbl 1115.76327
[24] Siddheshwar, P. G.: Thermorheological effect on magnetoconvection in weak electrically conducting fluids under 1g and $\mu_g$. Pramana J. Phys. 62 (2004), 61-68. DOI 10.1007/BF02704425
[25] Siddheshwar, P. G.: A series solution for the Ginzburg-Landau equation with a time-periodic coefficient. Appl. Math., Irvine 1 (2010), 542-554. DOI 10.4236/am.2010.16072
[26] Siddheshwar, P. G., Bhadauria, B. S., Mishra, P., Srivastava, A. K.: Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model. Int. J. Non-Linear Mech. 47 (2012), 418-425. DOI 10.1016/j.ijnonlinmec.2011.06.006
[27] Siddheshwar, P. G., Pranesh, S.: Magnetoconvection in fluids with suspended particles under 1g and $\mu g$. Aerosp. Sci. Technol. 6 (2002), 105-114. DOI 10.1016/S1270-9638(01)01144-0 | Zbl 1006.76545
[28] Siddheshwar, P. G., Pranesh, S.: An analytical study of linear and non-linear convection in Boussinesq-Stokes suspensions. Int. J. Non-Linear Mech. 39 (2004), 165-172. DOI 10.1016/S0020-7462(02)00169-5 | Zbl 1348.76176
[29] Siddheshwar, P. G., Ramachandramurthy, V., Uma, D.: Rayleigh-Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. Int. J. Eng. Sci. 49 (2011), 1078-1094. DOI 10.1016/j.ijengsci.2011.05.020 | Zbl 1423.76504
[30] Siddheshwar, P. G., Titus, P. S.: Nonlinear Rayleigh-Bénard convection with variable heat source. J. Heat Transfer 135 (2013), Article ID 122502, 12 pages. DOI 10.1115/1.4024943
[31] Somerscales, E. F. C., Dougherty, T. S.: Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below. J. Fluid Mech. 42 (1970), 755-768. DOI 10.1017/S0022112070001593
[32] Sparrow, E. M., Goldstein, R. J., Jonsson, V. K.: Thermal instability in a horizontal fluid layer: Effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18 (1964), 513-528. DOI 10.1017/S0022112064000386 | MR 0187533 | Zbl 0128.20401
[33] Stengel, K. C., Oliver, D. S., Booker, J. R.: Onset of convection in a variable viscosity fluid. J. Fluid Mech. 120 (1982), 411-431. DOI 10.1017/S0022112082002821 | Zbl 0534.76093
[34] Thirlby, R.: Convection in an internally heated layer. J. Fluid Mech. 44 (1970), 673-693. DOI 10.1017/S0022112070002082 | Zbl 0219.76098
[35] Torrance, K. E., Turcotte, D. L.: Thermal convection with large viscosity variations. J. Fluid Mech. 47 (1971), 113-125. DOI 10.1017/S002211207100096X
[36] Tritton, D. J., Zarraga, M. N.: Convection in horizontal layers with internal heat generation: Experiments. J. Fluid Mech. 30 (1967), 21-31. DOI 10.1017/S0022112067001272
[37] Watson, E. L.: Rheological behaviour of apricot purees and concentrates. Can. Agric. Eng. 10 (1968), 8-11.
[38] Yusuf, A. B., Ajibade, O. A.: Combined effects of variable viscosity, viscous dissipation and thermal radiation on unsteady natural convection couette flow through a vertical porous channel. FUDMA J. Sci. 4 (2020), 135-150. DOI 10.33003/fjs-2020-0402-208
Partner of
EuDML logo