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Abstract. The generalized Lorenz model for non-linear stability of Rayleigh-Bénard
magneto-convection is derived in the present paper. The Boussinesq-Stokes suspension fluid
in the presence of variable viscosity (temperature-dependent viscosity) and internal heat
source/sink is considered in this study. The influence of various parameters like suspended
particles, applied vertical magnetic field, and the temperature-dependent heat source/sink
has been analyzed. It is found that the basic state of the temperature gradient, viscos-
ity variation, and the magnetic field can be conveniently expressed using the half-range
Fourier cosine series. This facilitates to determine the analytical expression of the eigen-
value (thermal Rayleigh number) of the problem. From the analytical expression of the
thermal Rayleigh number, it is evident that the Chandrasekhar number, internal Rayleigh
number, Boussinesq-Stokes suspension parameters, and the thermorheological parameter
influence the onset of convection. The non-linear theory involves the derivation of the
generalized Lorenz model which is essentially a coupled autonomous system and is solved
numerically using the classical Runge-Kutta method of the fourth order. The quantification
of heat transfer is possible due to the numerical solution of the Lorenz system. It has been
shown that the effect of heat source and temperature-dependent viscosity advance the onset
of convection and thereby give rise to enhancing the heat transport. The Chandrasekhar
number and the couple-stress parameter have stabilizing effects and reduce heat transfer.
This problem has possible applications in the context of the magnetic field which influences
the stability of the fluid.

Keywords: Rayleigh-Bénard convection; heat source/sink; Boussinesq-Stokes suspension;
Boussinesq approximation; Lorenz model
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Nomenclature

Latin symbols:

C Couple stress parameter

d Depth of the fluid layer (m)

g Acceleration due to gravity (g = 9.8ms−2)
H0 Magnetic field

Nu Nusselt number

p Pressure (Pa)
~q Velocity components of u, v, w (ms−1)

Pr Prandtl number

Pm Magnetic Prandtl number
Q Chandrasekhar number

RE External Rayleigh number

RI Internal Rayleigh number
T Temperature (K)

t Time (s)

∆T Temperature difference between the walls

Greek symbols:

µ Dynamic viscosity (Pa s)

µ′ Couple stress viscosity

µm Magnetic permeability
πα Wave number

β Thermal expansion coefficient (K−1)

χ Constant thermal diffusivity
̺ Density (kgm−3)

ψ Stream function

Ψ Perturbed stream function
ϕ Magnetic potential

Φ Perturbed magnetic potential

Θ Perturbed temperature

Other symbols:

x, y, z Cartesian coordinates (m)

î Unit vector normal in x-direction

k̂ Unit vector normal in z-direction
∇2 Laplace operator
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1. Introduction

Thermal convection in a horizontal fluid layer in the presence of an internal heat
source subject to constant but different temperatures at the boundaries has been
extensively investigated by many researchers due to its practical importance in en-
gineering and geophysical problems. The Rayleigh-Bénard convection in a New-
tonian fluid with heat sources has been analyzed initially by Sparrow et al. [32].
Many theoretical studies on thermal convection have been explored by Roberts [21],
McKenzie [12], Kulacki and Goldstein [8], and Thirlby et al. [34] and the experi-
mental investigation on thermal convection by Palm [14], Tritton and Zarraga [36],
Clever [5], and many others. The internal heat source Q∗ is considered to be uni-
form in all of the above works. But in many practical problems and applications,
Q∗ is non-uniform in nature, which is due to many internal factors such as heat
release of chemical reaction that takes place in the fluids, heat source produced by
the radiation from the external medium, radioactive decay and so on. Riahi [19], [20]
discussed the non-linear convection in the horizontal layer with the heat source. He
showed that the effect of non-uniform internal heat source Q∗ strongly affects the cell
size, the stability of convective motion, and the internal motion of hexagonal cells.
They have discussed the problem of non-linear thermal convection in a low Prandtl
number fluid with internal heating. Bhattacharya and Jena [2] have analyzed the
thermal instability of the horizontal layer of micropolar fluid with the heat source.
They found that the heat source and heat sink both have the same destabilizing
effect in micropolar fluids.
Siddheshwar and Titus [30] have made a detailed linear and non-linear stability

analysis for the Newtonian fluid with heat source/sink analytically using Lorenz and
Ginzburg-Landau models. They have used the minimal representation of the Fourier
series in finite-amplitude analysis to find its mention in the study of chaotic thermal
convection, which has also been implemented by Ramachandramurthy et al. [16], [18],
[17], [1]. For the following few reasons, many researchers have found the truncated
Fourier series expansion to be valuable:

(1) to explicit instability due to convection of many non-isothermal situations of
practical interest,

(2) to undertake linear stability analysis and measure heat transport by generating
an analytical expression for thermal Rayleigh number.

In most of the above works, researchers have considered the effect of heat sources
on Newtonian fluids. However, in many real settings, the majority of fluids are
not so pure, containing suspended particles which may be polymeric suspensions,
liquid crystals, and so on. In the study of fluids, suspended particles have a sig-
nificant influence. The presence of suspended particles does have a huge stabiliz-
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ing/destabilizing influence on the fluid’s thermal convection. Hence, the study related
to non-Newtonian fluids with heat source/sink in our modern science technology is
more desirable. Since the last few decades, the study of such fluids has been a brisk
topic of research, particularly in many industrially essential fluids such as polymeric
suspensions, chemicals, paints, liquid crystal solidifications, pharmaceuticals, food
and beverages, refrigeration, and many others.

Convection in a fluid layer with varying viscosity has gotten a lot of interest in
recent years because of its applications in the fields like terrestrial planets, heat
transport, and so on. As a result, numerous academics have focused on the variable
viscosity problem with Rayleigh-Bénard convection (Platten and Legros [15], Geb-
hart et al. [6], Siddheshwar and Pranesh [27], Siddheshwar [26] and the references
therein). Gireesha et al. [7] discussed how the viscosity which depends on the temper-
ature and also on the heat source will affect the kerosene-Alumina nano liquid. They
made a non-linear convective analysis on the augmentation of heat transport rate
in a liquid propellant rocket engine and found that the temperature of nano-liquid
increases due to the effect of radiation and space-dependent heat sources. Yusuf and
Ajibade [38] have done a detailed analysis on how the viscosity variation and thermal
radiation are going to affect the convection which occurs naturally in the fluid. They
found that the velocity of the fluid is directly proportional to variations in viscosity
and the fluid temperature variation is also directly proportional to thermal radiation.
This work is the extension work of Makinde et al. [9] in which the fluid viscosity is
considered to have a constant status. Manjunatha et al. [10] also investigated the ef-
fect of variable viscosity, variable convection, and volume fraction for different types
of fluid flow of nanofluids. The results show that the increase in the volume fraction
will increase the thermal conductivity in the fluid and the Marangoni effect is very
suitable for the cooling process. The viscosity of many engineering and geophysical
problems is substantially influenced by temperature. Torrance and Turcotte [35],
Busse and Frick [3], Stengel et al. [33], Siddheshwar [25], Severin and Herwig [22],
and others have studied the thermorheological effect due to significant variation of
viscosity with temperature, which is generally in the polynomial or exponential form
through the truncated Taylor series approximation. Somerscales and Dougherty [31]
investigated the experimental work on convection in fluids with the thermorheologi-
cal effect. Siddheshwar [24] has also investigated the effect of temperature-dependent
viscosity for a weak electrically conducting fluid under 1g and µg situations in the
presence of a magnetic field. The results of the work mentioned above lead to many
possible astrophysical as well as terrestrial applications in modern science.

Siddheshwar and Pranesh [28] studied the linear and non-linear convection for the
fluid with Boussinesq-Stokes suspensions analytically. Siddheshwar et al. [29] ana-
lyzed the thermorheological effect of Rayleigh-Bénard magnetoconvection in Newto-
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nian fluid numerically for various boundary combinations. Sharma and Sharma [23]
have analyzed the effect of suspended particles on the couple-stress fluid in the pres-
ence of a magnetic field. Meenakshi and Siddheshwar [13] have made an analytical
investigation on the Rayleigh-Bénard convection for the twenty nanoliquids in the
presence of a volumetric heat source. Maruthamanikandan et al. [11] presented work
on Marangoni convective instability in a ferromagnetic fluid layer in the presence
of a spatial heat source and viscosity variation. In the presence of an internal heat
source/sink, the influence of Boussinesq-Stokes suspension and variable viscosity on
Rayleigh-Bénard magnetoconvection is investigated in this study. This research in-
cludes both linear and weak non-linear studies.

xz=0

z= d

z

T0

T0 +∆Tstress-free isothermal

stress-free isothermal

temperature sensitive

Boussinesq-Stokes

suspension fluid

with heat source

H0

y

~g

Figure 1. Physical model of the problem.

2. Schematic of flow configuration and mathematical modeling

Consider an electrically conducting Boussinesq-Stokes suspension fluid with heat
source/sink between two infinitely extended parallel planes of depth d which support
Rayleigh-Bénard situation as shown in Fig. 1. As known in the Rayleigh-Bénard
convection problems, the lower and upper boundaries are maintained at different
temperatures T0 +∆T and T0, respectively, so that there is a temperature gradient
∆T > 0 (see Fig. 1) across the fluid layer. In addition to temperature gradient,
a vertically induced magnetic field ~H = Hx î + Hz k̂ is also imposed. Here lower
and upper boundaries are considered stress-free and isothermal (i.e., maintained at
constant temperature). For the sake of non-linear stability analysis, all physical
quantities of fluid are assumed to be independent of y and depend only on x and z.
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The density, dynamic viscosity, and heat source/sink are assumed to be temperature-
dependent. Subjected to the Oberbeck-Boussinesq approximations, the governing
equations for the fluid motion in electrically conducting couple-stress fluid with a heat
source in two-dimension are

∂~q

∂t
+ (~q · ∇)~q = −∇p

̺0
− ̺(T )

̺0
gk̂ +

1

̺0
∇ · (µf (∇~q +∇~q⊤))(1)

−µ
2
m

̺0
( ~H · ∇) ~H − µ′

̺0
∇4~q,

∂T

∂t
+ (~q · ∇)T − χ∇2T −Q∗(T − T0) = 0,(2)

∂ ~H

∂t
+ (~q.∇) ~H − ( ~H.∇)~q − νm∇2 ~H = 0,(3)

̺ = ̺0(1− β(T − T0)),(4)

µf (T ) = µ0e
−δ(T−T0),(5)

∇ · ~q = 0,(6)

∇ · ~H = 0,(7)

where ~q = uî+wk̂ is velocity vector, ~H = Hx î+Hzk̂ is the magnetic intensity vector,
∇·(µf (∇~q +∇~q⊤)) represents the variable viscosity, Q∗(T −T0) is the temperature-
dependent heat source/sink, and µf (T ) is the fluid viscosity, which is assumed to be
an exponential model in-order to study the strong variation of viscosity with respect
to variation of temperature.

When the fluid is at the basic state, velocity ~qb, magnetic fieldHb(z), density ̺b(z),
temperature Tb(z) and viscosity µf b have their solutions in the following forms:

(8)



































~q = (0, 0), Hb = Hb(z), ̺b

(z

d

)

= ̺0

(

1− β∆T
sin

√
RI(1− z/d)

sin
√
RI

)

,

Tb = T0 +∆T
sin

√
RI(1− z/d)

sin
√
RI

, µfb

(z

d

)

= µ0e
−V sin

√
RI(1−z/d)/sin

√
RI ,

pb

(z

d

)

= −
∫

̺b

(z

d

)

gd
(z

d

)

+ k1,

where RI = Q∗d2/χ represents the internal Rayleigh number, V = δ∆T is ther-
morheological parameter and k1 is the constant of integration. The finite amplitude
perturbations are imposed for the basic state in the form:

(9)

{

~q = ~qb(z) + ~q′(x, z, t), ~H = ~Hb(z) + ~H ′(x, z, t), ̺ = ̺b(z) + ̺′(x, z, t),

T = Tb(z) + T ′(x, z, t), µ = µfb(z) + µf ′(x, z, t), p = pb(z) + p′(x, z, t).
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In the above equation, the prime denotes the perturbed quantity. We shall put (9)
into the governing equations, the following component equations are obtained:

∂~q′

∂t
+ (~q′ · ∇)~q′ = −∇p′

̺0
− ̺′(T )

̺0
gk̂ +

1

̺0
∇ · (µf (∇~q′ +∇~q′T ))(10)

−
µ2
m

̺0
( ~H ′.∇) ~H ′ + µmHb

∂ ~H ′

∂z
−
µ′

̺0
∇4~q′,

∂T ′

∂t
+ (~q′ · ∇)T ′ + w′ ∂Tb

∂z
− χ∇2T ′ = 0,(11)

∂ ~H ′

∂t
+ (~q′.∇) ~H ′ − ( ~H ′ · ∇)~q′ −Hb

∂w′

∂z
− νm∇2 ~H ′ = 0,(12)

∇ · ~q′ = 0,(13)

∇ · ~H ′ = 0,(14)

̺′ = −̺0βT ′.(15)

For the sake of analyzing the fluid, we will assume two-dimensional disturbances,
hence we introduce magnetic potential ϕ′ and stream function ψ′ as

(16)















u′ = −∂ψ
′

∂z
, w′ =

∂ψ′

∂x
,

Hx
′ = −∂ϕ

′

∂z
, Hz

′ =
∂ϕ′

∂x
.

The classical method of operating curl for (10) aids in the elimination of the pressure
term. As a result, using the scaling described below, we may convert the given system
of equations to dimensionless equations:

(17) x = Xd, z = Zd, ψ′ = Ψχ, T ′ = Θ∆T, ϕ′ = ΦH0d.

The non-dimensional governing equations are obtained as follows:

1

Pr

( ∂

∂t
(∇2Ψ) +

∂(Ψ,∇2Ψ)

∂(X,Z)

)

= RE
∂Θ

∂X
− C∇6Ψ(18)

+QPm
(∂(∇2Φ)

∂Z
+
∂(Φ,∇2Φ)

∂(X,Z)

)

+ µfb∇4Ψ+
∂µfb

∂Z

∂

∂Z
(∇2Ψ),

∂Θ

∂t
=
∂Ψ

∂X

(

1 + 2

∞
∑

n=1

RI

RI − n2
π
2
cosnπZ

)

+∇2Θ+RIΘ− ∂(Ψ,Θ)

∂(X,Z)
,(19)

( ∂

∂t
− Pm∇2

)

Φ =
∂Ψ

∂Z
+
∂(Ψ,Φ)

∂(X,Z)
,(20)

where
∂(Ψ,∇2Ψ)

∂(X,Z)
,
∂(Φ,∇2Φ)

∂(X,Z)
,
∂(Ψ,Θ)

∂(X,Z)
,
∂(Ψ,Φ)

∂(X,Z)
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in the above equations represents the Jacobians, i.e.

∂(M,N)

∂(X,Z)
=
∂M

∂X

∂N

∂Z
− ∂M

∂Z

∂N

∂X
, ∇2 =

∂2

∂X2
+

∂2

∂Z2

is the Laplace operator, Pr = µ/(̺0χ) is the Prandtl number, Pm = νm/χ is the
magnetic Prandtl number, RE = β̺0gd

3∆T/(µ0χ) is the thermal Rayleigh num-
ber, C = µ′/(µd2) is the couple stress parameter, Q = µ2

mσH
2
0d

2/µ is the Chan-
drasekhar number, RI = Q∗d2/χ is the internal Rayleigh number. Furthermore,
µfb = µ0e

−V (1−Z) and ∂µfb/∂Z = µ0V e−V (1−Z) both will be stated as half-range
Fourier cosine series in the interval [0, 1] and this representation helps in obtaining
the analytical expression for the thermal Rayleigh number. Moreover, the trun-
cated Fourier cosine series is good enough to represent the basic viscosity. It is even
clear that the basic states of the temperature-gradient and viscosity are linear. The
boundary conditions for the present problem on velocity, temperature are

(21)















∂Ψ

∂X
=
∂2Ψ

∂Z2
= Θ =

∂Φ

∂Z
= 0 at Z = 0,

∂Ψ

∂X
=
∂2Ψ

∂Z2
= Θ =

∂Φ

∂Z
= 0 at Z = 1.

In the case of free-free surface, the boundary conditions on fluid velocity depend on
the existence of surface tension. If the free surface does not deform in the direction
normal to itself, we must require that w = 0 at the boundaries. In case the surface
tension is absent, the condition on velocity at the free surface is w = d2w/dz2 = 0;
this condition is called stress-free condition. If the fluid layer’s bounding wall has a
high heat conductivity and a large heat capacity, the temperature will be consistent
and stable throughout time, i.e., the boundary temperature would be unperturbed by
any flow or temperature perturbations in the fluid. Thus, T = 0 at the boundaries.
This boundary condition is known as isothermal or boundary condition of the first
kind. This condition is also known as the Dirichlet condition.

2.1. Linear stability using truncated Fourier series expansion. The onset
of convection is due to the buoyancy-driven condition with the vertical temperature
gradient by a non-dimensional number called thermal Raleigh number. The thermal
Raleigh number is a non-dimensional form of the temperature gradient across the
fluid layer. In the absence of an oscillatory mode of convection, one can derive the
analytical expression of the thermal Raleigh number by considering the linearized
version of equations (18), (19), and (20). Here we neglected the terms

∂(Ψ,∇2Ψ)

∂(X,Z)
,

∂(Φ,∇2Φ)

∂(X,Z)
,

∂(Ψ,Θ)

∂(X,Z)
and

∂(Ψ,Φ)

∂(X,Z)
,
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since these terms give the product of amplitudes which contributed less towards
linear theory. However, these terms are retained while performing the non-linear
stability analysis. As Chandrasekhar’s linear theory states, the solutions of (18),
(19), and (20) are truncated Fourier series which are periodic in the form given by
Chandrasekhar [4]

(22)











Ψ(X,Z) = A0 sin(παX) sin(πZ),

Θ(X,Z) = B0 cos(παX) sin(πZ),

Φ(X,Z) = C0 sin(παX) cos(πZ).

Here, A0, B0, and C0 denote the amplitudes of stream function, temperature field,
and magnetic potential, respectively. Substituting these in the linearized version
of the dimensionless (18), (19), and (20) and incorporating the standard Galerkin
procedure, we obtain the following system of linear equations of order 3× 3

(23)



























(π2η2a2 +
η4

2
(a0 − a2) + Cη6)Ψ0 −REπαΘ0 +QPmη2πΦ0 = 0,

(

1− RI

RI − 4π
2

)

παΨ0 + (RI − η2)Θ0 = 0,

πΨ0 − Pmη2Φ0 = 0.

Clearly, the above equations are the homogeneous linear system of equations that has
a trivial solution when the determinant of the coefficient matrix vanishes. Therefore,
one can derive the following analytical expression for the thermal Rayleigh number:

(24) RE =
(η21 −RI)(4π

2 −RI)(Qπ
2 + Cη61 −

η4

1

2 ((1− 2π
2)a2 − a0))

4π
4α2

,

where η21 = π
2(1+α2), a0 = 2

∫ 1

0 µfb dZ and a2 = 2
∫ 1

0 µfb cos(2πZ) dZ represents the
half range Fourier series expansion for the function µfb = µ0e

−V sin
√
RI(1−z/d)/sin

√
RI

and πα is the horizontal wave number. It is clear from the analytical expansion of
µfb(Z) that it is more conveniently represented by employing the half range Fourier
cosine series. This representation facilitates the analytical solution of the problem.
While deriving the above expression of RE , we substitute (22) into the linearized
version of (18), (19), and (20). It is then integrated with respect to X between the
limits [0, 2/α] and with respect to Z between the limits [0, 1] (orthogonal procedure
gives the set of linear equations). Clearly, the analytical expression obtained in (24)
is a function of Chandrasekhar number Q, thermorheological parameter V , internal
Rayleigh number RI and couple stress parameter C. It is evident that these parame-
ters influence the onset of convection. The influence of these parameters on stability
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has been well discussed in the result and discussion. It is also evident that when
we put Q = V = C = 0, the analytical expression of the thermal Raleigh number
reduces to its standard form as

(25) RE =
η21(η

2
1 −RI)(4π

2 −RI)

4π
4α2

.

2.2. Non-linear stability analysis using truncated yet representative us-

ing truncated Fourier modes. The linear stability analysis discussed above shows
only conductive to convective mode transition, i.e., stationary instability, but it fails
to explain heat transfer within the fluid layer. We now embark upon a weak non-
linear stability analysis employing minimal representation of Fourier series for the
temperature, magnetic field and velocity.
The truncated yet representative Fourier modes which describe the non-linear state

of the system are given by

(26)











Ψ(X,Z, τ) = A1(τ) sin(παX) sin(πZ),

Θ(X,Z, τ) = B1(τ) cos(παX) sin(πZ)−D1(τ) sin(2πZ),

Φ(X,Z, τ) = E1(τ) sin(παX) cos(πZ)− F1(τ) sin(2παX).

We now substitute (26) and perform standard orthogonalization process to obtain
the following Lorenz model:

dA1

dτ
=

[

(Cη21 + C1)A1 + C2B1 −
(PmQπ)

η21
E1 − PmQ

(4π
4α3 − 2π

2αη21
η41

)

E1F1

]

,(27)

dB1

dτ
=

1

η21
[παA1 − η21B1 − π

2αA1D1],(28)

dD1

dτ
=

1

η21

[

π
2α

2
A1B1 − 4π

2D1

]

,(29)

dE1

dτ
=

1

η21
[πA1 − Pm η21E1 + π

2αA1F1],(30)

dF1

dτ
=

1

η21
[−π

2αA1E1 − 4π
2α2PmF1],(31)

where

C1 = Pr
[(η21 − 2π

2

2η21

)

a2 −
a0
2

]

, C2 =
Pr παRE

η41
and τ = η21τ.

It is evident that the Lorenz model in (27) to (31) is a generalized one but its
coefficient involves all the parameters which influence the onset of convection. The
analytical solution of such a system is not possible but one can solve these equations
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numerically using the classical Runge-Kutta method. The amplitudes A1(τ), B1(τ),
D1(τ), E1(τ) and F1(τ) represent the dynamics of the system which varies wrt
the variation of the parameter. As we know the time-dependent amplitude A1(τ)

represents the intensity of convection while the remaining represent the different
behavior of the system.

3. Heat transport using generalized Lorenz model

The quantification of heat transport is possible due to the numerical solution of
the generalized Lorenz model. The horizontally averaged Nusselt number Nu at the
lower boundary, i.e., Z = 0 for the stationary mode of convection (preferred mode
in the problem), is given by the following expression:

Nu(τ) =
Heat transfer due to conduction+convection

Heat transfer due to conduction
,(32)

where “Heat transfer due to conduction+convection” is
[

αC

2

∫ 2/α

X=0

(sin(
√

RI(1− Z))

sin
√
RI

+Θ
)

,Z
dX

]

Z=0

and “Heat transfer due to conduction” is
[

αC

2

∫ 2/α

X=0

( sin(
√

RI(1− Z))

sin
√
RI

)

,Z
dX

]

Z=0

.

Substituting (26b) into (33), the Nusselt number Nu(τ) expression is obtained as:

(33) Nu(τ) = 1 +
2 tan

√
RI√

RI

D1(τ).

4. Results and discussion

In this paper, we focus on analyzing the effect of heat source/sink and temperature-
dependent viscosity on the onset of magnetoconvection for the Boussinesq-Stokes
suspension fluid. The effect of suspended particles, heat source/sink, temperature-
dependent viscosity and applied magnetic field for the Rayleigh-Bénard convection
are respectively represented by the couple stress parameter C, internal Rayleigh num-
ber RI , variable viscosity parameter V and the Chandrasekhar number Q. The prob-
lem with these limitations is subjected to a linear and non-linear stability analysis.
The parameters Pm and Q control the effects of electrical conductivity and magnetic
field. The impact of these variables on the onset of stability and heat transmission
is thoroughly examined.
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The linear stability analysis clearly illustrates the parameter influence on the eigen-
value problem, whereas the non-linear theory is used in examining the quantification
of heat transport in the system.

4.1. Linear stability analysis. The following are some of the key features of
linear stability analysis:

(1) Deriving the expression for the half range Fourier series for basic non-uniform
temperature gradient and the basic viscosity over the interval [0, 1].

(2) Obtaining an expression for the eigenvalue, critical Rayleigh number REC
for

the stationary convection using Galerkin technique.

(3) Plotting Neutral stability curve (Rayleigh—wave number graphs) in order to
analyze the convective instability.

Figs. 3–8 are the plots of external Rayleigh number RE versus wave number α, for
the different combination values of Q, V , C and RI . The effect of couple stress
parameter C can be observed from each of the linear plots. The stabilizing effect of
the system can also be noticed, that is, the increasing values of C (C = 0, C = 0.02,
C = 0.04) increase RE but decrease the wave number α. The effect of magnetic
field Q is similar to the effect of C, which can be observed by comparing Fig. 3 and
Fig. 6, that is, the increase of Q corresponds to the increase in both RE and α.

From Fig. 3 (both) we can observe that the increase of V from V = 0 to V = 0.5

for Q = 2 and RI = −1 corresponds to the decrease of RE and the increase of α; this
shows the destabilizing effect of variable viscosity V . Similar effect can be observed
for the other values of Q and RI (i.e., Q = 4, RI = −1, 0, 1). The effect of variable
heat source RI is also similar to the effect of V . The influence of heat source RI

advance the onset of convection, whereas the heat sink delays the onset of convection.

RI =−2,−1, 0, 1, 2
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Θb(Z)

Figure 2. Temperature profile of quiescent basic state for different values of RI .
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Figure 3. Plot of REC
vs. αC for Q = 2, RI = −1.
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Figure 4. Plot of REC
vs. αC for Q = 2, RI = 0.
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Figure 5. Plot of REC
vs. αC for Q = 2, RI = 1.
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Figure 6. Plot of REC
vs. αC for Q = 4, RI = −1.
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In the view of analyzing the results obtained in the present problem, we examine
the non-linear temperature distribution in the basic state, which sheds light on the
observed effect of the heat source (sink) on stability. The following model is known
for a scaled, dimensionless distribution of temperature:

(34) θb(Z) =
Tb(Z)− T0

∆T
=

sin(
√
RI(1− Z))

sin(
√
RI)

.

Fig. 2 represents the non-uniform basic temperature gradient of Θb(Z) versus Z for
the different values of RI . It can be seen that the plots are not symmetric about the
line Θb(Z) = 1 − Z, which is the basic temperature distribution when there is no
heat source/sink. Such asymmetry due to temperature-dependent heat source/sink
helps to conclude that the findings on the issue with a heat sink cannot be achieved
from that of a heat source through an acceptable transformation, as can be done
with a constant heat source (Watson [37]).

4.2. Non-linear stability analysis. The following are some of the key features
of non-linear stability analysis:

(1) A double Fourier series representation is used to perform finite amplitude analy-
sis for the magnetic potential Φ, temperature Θ, and stream function Ψ.

(2) The non-linear system of equations is constructed in the form of generalized
Lorenz model.

(3) The Nusselt number is considered to be an important factor to analyze the
quantification of heat transport for the Boussinesq-Stokes suspension liquid in
the existence of a variable heat source for the stationary mode of magnetocon-
vection.

(4) To analyze the individual effects of the parameters, the variation of the Nusselt
number with respect to time is plotted.

Before we start the discussion of the results, we empathize that the truncated
Fourier series models are adequate enough to depict Rayleigh-Bénard convection
(Siddeheshwar (31)). In addition to this, Lorenz model of the problem is quantita-
tively evaluated using the Runge-Kutta method with the appropriate step size. We
have used the initial conditions A1(0) = B1(0) = D1(0) = E1(0) = F1(0) = 5 in
order to carry out numerical integration of the coupled system. The Prandtl number
of the couple-stress liquid is higher than that of the Newtonian carrier liquid because
the carrier liquid contains suspended particles. As a result, we have set Pr = 10 as
the reference for our discussion.
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Figure 7. Plot of REC
vs. αC for Q = 4, RI = 0.
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Figure 8. Plot of REC
vs. αC for Q = 4, RI = 1.

The plots of Nusselt number Nu variation vs time τ for different values of Q,
C, V , RI and for the fixed value of Pr = 10 are shown in Figs. 9–14. Each of the
Nusselt number plots shows the distinct or the combined effects of the magnetic field,
suspended particles, temperature-dependent viscosity, and the variable heat source.
On comparing the Nu plots from Figs. 9, 10 and 11, we observe that Nu increases
with the increasing values of RI (i.e., RI = −1,0, 1 ) for the fixed value of Q = 2.
Here the negative value of RI represents the heat sink, whereas positive value of RI

represents heat source. The impact of heat source is dominant when compared to
the effect of heat sink in the quantification of heat transport. Hence, internal heating
in the liquid results in the increase of heat transport in the system. Thus, the heat
source in the fluid advances the onset of convection. However, the presence of a heat
sink leads to a delay in the onset of convection. By observing Fig. 8 we can notice
a similar effect of variable viscosity V for the heat transport. The Nusselt number
Nu rises as V rises, indicating the convective contribution to heat transport. When
Figs. 8 and 11 are compared, the influence of the magnetic field Q can be seen. The
reducing effect of heat transfer owing to the increase in the magnetic field may be
seen in these figures. Hence, the increase of Q corresponds to a decrease in Nusselt
number Nu. From each of these plots we have analyzed the variation of Nusselt num-
ber Nu in the inhabitance of Boussinesq-Stokes suspension parameter C and noticed
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how the increase of couple stress parameter declines the heat transport both in the
presence and absence of magnetic field Q, variable viscosity V and heat source RI .
As a result, it is evident that Nu drops as Q and C increase. Because of the increased
viscosity caused by the presence of suspended particles in the fluid, more heating is
required to make the system unstable, resulting in the stabilizing effect of C.
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Figure 9. Variation of Nusselt number plot with τ for Q = 2, RI = −1 and Pr = 10,
Pm = 10.
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Figure 10. Variation of Nusselt number plot with τ for Q = 2, RI = 0 and Pr = 10,
Pm = 10.
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Figure 11. Variation of Nusselt number plot with τ for Q = 2, RI = 1 and Pr = 10,
Pm = 10.
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5. Conclusion

(1) The effect of Chandrasekhar number and couple-stress parameter is that the
system is stabilized.

(2) The effect of variable viscosity and internal Rayleigh number destabilizes the
system and convection sets in soon.

(3) Both REc
and παC decrease as V and RI increase in the absence of C.

(4) The Nusselt number decreases with an increase in Q and C.

(5) The internal Rayleigh number on thermal instability leads to destabilizing effect
as Nu increases on increasing RI , which results in the increase of heat transport
of the fluid.

(6) The effect of increases in Chandrasekhar number Q and couple stress parame-
ter C leads to a decrease in the Nusselt number, which indicates the stabilizing
effect of the system.

(7) The effect of the increase in internal Rayleigh number RI and variable viscos-
ity V is that the heat transfer increases, which leads to the increase in the
Nusselt number value.
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Figure 12. Variation of Nusselt number plot with τ for Q = 4, RI = −1 and Pr = 10,
Pm = 10.
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Figure 13. Variation of Nusselt number plot with τ for Q = 4, RI = 0 and Pr = 10,
Pm = 10.
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Figure 14. Variation of Nusselt number plot with τ for Q = 4, RI = 1 and Pr = 10,
Pm = 10.
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