[2] Athar, S., Wang, Z.:
A comprehensive performance evaluation of image quality assessment algorithms. IEEE Access 7 (2019), 140030-140070.
DOI 10.1109/ACCESS.2019.2943319
[5] Chen, G.-H., Yang, C.-L., Xie, S.-L.:
Gradient-based structural similarity for image quality assessment. IEEE International Conference on Image Processing IEEE, Piscataway (2006), 2929-2932.
DOI 10.1109/ICIP.2006.313132
[6] Dosselmann, R., Yang, X. D.:
A comprehensive assessment of the structural similarity index. Signal Image Video Process. 5 (2011), 81-91.
DOI 10.1007/s11760-009-0144-1
[7] Horé, A., Ziou, D.:
Image quality metrics: PSNR vs. SSIM. 20th International Conference on Pattern Recognition IEEE, Piscataway (2010), 2366-2369.
DOI 10.1109/ICPR.2010.579
[9] Kang, L., Ye, P., Li, Y., Doermann, D.:
Convolutional neural networks for no-reference image quality assessment. IEEE Conference on Computer Vision and Pattern Recognition IEEE, Piscataway (2014), 1733-1740.
DOI 10.1109/CVPR.2014.224
[11] Li, C., Bovik, A. C.:
Content-partitioned structural similarity index for image quality assessment. Signal Process., Image Commun. 25 (2010), 517-526.
DOI 10.1016/j.image.2010.03.004
[12] Li, Y., Wang, G., Nie, L., Wang, Q., Tan, W.:
Distance metric optimization driven convolutional neural network for age invariant face recognition. Pattern Recognition 75 (2018), 51-62.
DOI 10.1016/j.patcog.2017.10.015
[13] Ma, Z., Zhou, S., Wu, X., Zhang, H., Yan, W., Sun, S., Zhou, J.:
Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Phys. Med. Biol. 64 (2019), Article ID 025005.
DOI 10.1088/1361-6560/aaf5da
[15] Wainwright, M. J., Schwartz, O., Simoncelli, E. P.: Natural image statistics and divisive normalization. Probabilistic Models of the Brain: Perception and Neural Function MIT Press, Cambridge (2002), 203-222.
[16] Wang, C., Peng, G., Baets, B. De:
Deep feature fusion through adaptive discriminative metric learning for scene recognition. Inf. Fusion 63 (2020), 1-12.
DOI 10.1016/j.inffus.2020.05.005
[17] Wang, Z., Bovik, A. C.:
A universal image quality index. IEEE Signal Process. Lett. 9 (2002), 81-84.
DOI 10.1109/97.995823
[18] Wang, Z., Bovik, A. C., Lu, L.:
Why is image quality assessment so difficult?. IEEE International Conference on Acoustics, Speech, and Signal Processing IEEE, Piscataway (2002), IV-3313--IV-3316.
DOI 10.1109/ICASSP.2002.5745362 |
MR 0642901
[19] Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P.:
Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13 (2004), 600-612.
DOI 10.1109/TIP.2003.819861
[20] Wang, Z., Simoncelli, E. P., Bovik, A. C.:
Multiscale structural similarity for image quality assessment. 37th Asilomar Conference on Signals, Systems & Computers IEEE, Piscataway (2003), 1398-1402.
DOI 10.1109/ACSSC.2003.1292216
[21] Zhao, H., Gallo, O., Frosio, I., Kautz, J.:
Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3 (2017), 47-57.
DOI 10.1109/TCI.2016.2644865