Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Ventcel boundary condition; Laplace-Beltrami operator; composite Sobolev space; well-posedness
Summary:
This paper deals with a mixed boundary-value problem of Ventcel type in two variables. The peculiarity of the Ventcel problem lies in the fact that one of the boundary conditions involves second order differentiation along the boundary. Under suitable assumptions on the data, we first give the definition of a weak solution, and then we prove that the problem is uniquely solvable. We also consider a particular case arising in real-world applications and discuss the resulting model.
References:
[1] Apushkinskaya, D. E., Nazarov, A. I.: A survey of results on nonlinear Venttsel problems. Appl. Math., Praha 45 (2010), 69-80. DOI 10.1023/A:1022288717033 | MR 1738896 | Zbl 1058.35118
[2] Apushkinskaya, D. E., Nazarov, A. I., Palagachev, D. K., Softova, L. G.: Venttsel boundary value problems with discontinuous data. SIAM J. Math. Anal. 53 (2021), 221-252. DOI 10.1137/19M1286839 | MR 4198569 | Zbl 1458.35182
[3] Bonnaillie-Noël, V., Dambrine, M., Hérau, F., Vial, G.: On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42 (2010), 931-945. DOI 10.1137/090756521 | MR 2644364 | Zbl 1209.35035
[4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[5] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equations 32 (2007), 1245-1260. DOI 10.1080/03605300600987306 | MR 2354493 | Zbl 1143.26002
[6] Creo, S., Lancia, M. R., Nazarov, A., Vernole, P.: On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains. Discrete Contin. Dyn. Syst., Ser. S. 12 (2019), 57-64. DOI 10.3934/dcdss.2019004 | MR 3836592 | Zbl 1416.35098
[7] Carmo, M. P. do: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976). MR 0394451 | Zbl 0326.53001
[8] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). DOI 10.1090/gsm/019 | MR 2597943 | Zbl 1194.35001
[9] Favini, A., Goldstein, G. Ruiz, Goldstein, J. A., Romanelli, S.: The heat equation with generalized Wentzell boundary condition. J. Evol. Equ. 2 (2002), 1-19. DOI 10.1007/s00028-002-8077-y | MR 1890879 | Zbl 1043.35062
[10] Favini, A., Goldstein, G. Ruiz, Goldstein, J. A., Romanelli, S.: The heat equation with nonlinear general Wentzell boundary condition. Adv. Differ. Equ. 11 (2006), 481-510. MR 2237438 | Zbl 1149.35051
[11] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). DOI 10.1007/978-3-642-61798-0 | MR 0737190 | Zbl 0562.35001
[12] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics 24. Pitman, Boston (1985). DOI 10.1137/1.9781611972030 | MR 0775683 | Zbl 0695.35060
[13] Kashiwabara, T., Colciago, C. M., Dedè, L., Quarteroni, A.: Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J. Numer. Anal. 53 (2015), 105-126. DOI 10.1137/140954477 | MR 3296617 | Zbl 1326.65161
[14] Luo, Y., Trudinger, N. S.: Quasilinear second order elliptic equations with Venttsel boundary conditions. Potential Anal. 3 (1994), 219-243. DOI 10.1007/BF01053434 | MR 1269282 | Zbl 0823.35059
[15] McShane, E. J.: Extension of range of functions. Bull. Am. Math. Soc. 40 (1934), 837-842. DOI 10.1090/S0002-9904-1934-05978-0 | MR 1562984 | Zbl 0010.34606
[16] Nicaise, S., Li, H., Mazzucato, A.: Regularity and a priori error analysis of a Ventcel problem in polyhedral domains. Math. Methods Appl. Sci. 40 (2017), 1625-1636. DOI 10.1002/mma.4083 | MR 3622421 | Zbl 1375.35145
[17] Pucci, P., Serrin, J.: The Maximum Principle. Progress in Nonlinear Differential Equations and Their Applications 73. Birkhäuser, Basel (2007). DOI 10.1007/978-3-7643-8145-5 | MR 2356201 | Zbl 1134.35001
[18] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Clarendon Press, New York (1999). MR 1857663 | Zbl 0931.65118
[19] Salsa, S.: Partial Differential Equations in Action: From Modelling to Theory. Unitext 99. Springer, Cham (2016). DOI 10.1007/978-3-319-31238-5 | MR 3497072 | Zbl 1383.35003
[20] Venttsel', A. D.: On boundary conditions for multidimensional diffusion processes. Theor. Probab. Appl. 4 (1959), 164-177. DOI 10.1137/1104014 | MR 0121855 | Zbl 0089.13404
[21] Viglialoro, G., González, Á., Murcia, J.: A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cables. Int. J. Comput. Math. 94 (2017), 933-945. DOI 10.1080/00207160.2016.1154950 | MR 3625207 | Zbl 1371.35070
Partner of
EuDML logo