[3] Bonnaillie-Noël, V., Dambrine, M., Hérau, F., Vial, G.:
On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42 (2010), 931-945.
DOI 10.1137/090756521 |
MR 2644364 |
Zbl 1209.35035
[7] Carmo, M. P. do:
Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976).
MR 0394451 |
Zbl 0326.53001
[10] Favini, A., Goldstein, G. Ruiz, Goldstein, J. A., Romanelli, S.:
The heat equation with nonlinear general Wentzell boundary condition. Adv. Differ. Equ. 11 (2006), 481-510.
MR 2237438 |
Zbl 1149.35051
[13] Kashiwabara, T., Colciago, C. M., Dedè, L., Quarteroni, A.:
Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J. Numer. Anal. 53 (2015), 105-126.
DOI 10.1137/140954477 |
MR 3296617 |
Zbl 1326.65161
[16] Nicaise, S., Li, H., Mazzucato, A.:
Regularity and a priori error analysis of a Ventcel problem in polyhedral domains. Math. Methods Appl. Sci. 40 (2017), 1625-1636.
DOI 10.1002/mma.4083 |
MR 3622421 |
Zbl 1375.35145
[18] Quarteroni, A., Valli, A.:
Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Clarendon Press, New York (1999).
MR 1857663 |
Zbl 0931.65118
[21] Viglialoro, G., González, Á., Murcia, J.:
A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cables. Int. J. Comput. Math. 94 (2017), 933-945.
DOI 10.1080/00207160.2016.1154950 |
MR 3625207 |
Zbl 1371.35070