[2] Aldweby, H., Darus, M.:
On a subclass of bi-univalent functions associated with the $q$-derivative operator. J. Math. Comput. Sci., JMCS 19 (2019), 58-64.
DOI 10.22436/jmcs.019.01.08
[3] Arif, M., Haq, M. Ul, Liu, J.-L.:
A subfamily of univalent functions associated with $q$-analogue of Noor integral operator. J. Funct. Spaces 2018 (2018), Article ID 3818915, 5 pages.
DOI 10.1155/2018/3818915 |
MR 3762185 |
Zbl 1388.30012
[4] Brannan, D. A., (eds.), J. Clunie:
Aspects of Contemporary Complex Analysis. Academic Press, London (1980).
MR 0623462 |
Zbl 0483.00007
[6] Brannan, D. A., Taha, T. S.:
On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai, Math. 31 (1986), 70-77.
MR 0911858 |
Zbl 0614.30017
[7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results. House of Scientific Book Publications, Cluj-Napoca (2005).
[11] Duren, P. L.:
Univalent Functions. Grundlehren der mathematischen Wissenschaften 259. Springer, New York (1983).
MR 0708494 |
Zbl 0514.30001
[12] El-Deeb, S. M.:
Maclaurin coefficient estimates for new subclasses of bi-univalent functions connected with a $q$-analogue of Bessel function. Abstr. Appl. Anal. 2020 (2020), Article ID 8368951, 7 pages.
DOI 10.1155/2020/8368951 |
MR 4104661 |
Zbl 07245172
[13] El-Deeb, S. M., Bulboacă, T.:
Differential sandwich-type results for symmetric functions connected with a $q$-analog integral operator. Mathematics 7 (2019), Article ID 1185, 17 pages.
DOI 10.3390/math7121185
[14] El-Deeb, S. M., Bulboacă, T.:
Fekete-Szegő inequalities for certain class of analytic functions connected with $q$-analogue of Bessel function. J. Egypt. Math. Soc. 27 (2019), Article ID 42, 11 pages.
DOI 10.1186/s42787-019-0049-2 |
MR 4092068 |
Zbl 1435.30053
[16] El-Deeb, S. M., Bulboacă, T., El-Matary, B. M.:
Maclaurin coefficient estimates of bi-univalent functions connected with the $q$-derivative. Mathematics 8 (2020), Article ID 418, 14 pages.
DOI 10.3390/math8030418
[17] Elhaddad, S., Darus, M.:
Coefficient estimates for a subclass of bi-univalent functions defined by $q$-derivative operator. Mathematics 8 (2020), Article ID 306, 14 pages.
DOI 10.3390/math8030306
[20] Jackson, F. H.:
On $q$-functions and a certain difference operator. Trans. Royal Soc. Edinburgh 46 (1909), 253-281.
DOI 10.1017/S0080456800002751
[21] Jackson, F. H.: On $q$-definite integrals. Quart. J. 41 (1910), 193-203 \99999JFM99999 41.0317.04.
[25] Naeem, M., Khan, S., Sakar, F. M.:
Faber polynomial coefficients estimates of bi-univalent functions. Int. J. Maps Math. 3 (2020), 57-67.
MR 4179354
[26] Netanyahu, E.:
The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\vert z\vert<1$. Arch. Ration. Mech. Anal. 32 (1969), 100-112.
DOI 10.1007/BF00247676 |
MR 0235110 |
Zbl 0186.39703
[29] Sakar, F. M., Naeem, M., Khan, S., Hussain, S.:
Hankel determinant for class of analytic functions involving $q$-derivative operator. J. Adv. Math. Stud. 14 (2021), 265-278.
MR 4398168 |
Zbl 07389042
[32] Srivastava, H. M.:
Univalent functions, fractional calculus, and associated generalized hypergeometric functions. Univalent Functions, Fractional Calculus, and Their Applications John Willey & Sons, New York (1989), 329-354.
MR 1199160 |
Zbl 0693.30013
[33] Srivastava, H. M.:
Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344.
DOI 10.1007/s40995-019-00815-0 |
MR 4064730
[36] Srivastava, H. M., Eker, S. S., Hamidi, S. G., Jahangiri, J. M.:
Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 44 (2018), 149-157.
DOI 10.1007/s41980-018-0011-3 |
MR 3879475 |
Zbl 1409.30021
[38] Srivastava, H. M., El-Deeb, S. M.:
The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the $q$-convolution. AIMS Math. 5 (2020), 7087-7106.
DOI 10.3934/math.2020454 |
MR 4150209
[39] Srivastava, H. M., Karlsson, P. W.:
Multiple Gaussian Hypergeometric Series. Ellis Horwood Series in Mathematics and Its Applications. John Wiley & Sons, New York (1985).
MR 0834385 |
Zbl 0552.33001
[40] Srivastava, H. M., Khan, S., Ahmad, Q. Z., Khan, N., Hussain, S.:
The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator. Stud. Univ. Babeş-Bolyai, Math. 63 (2018), 419-436.
DOI 10.24193/subbmath.2018.4.01 |
MR 3886058 |
Zbl 1438.05021
[42] Srivastava, H. M., Motamednezhad, A., Adegani, E. A.:
Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 8 (2020), Article ID 172, 12 pages.
DOI 10.3390/math8020172
[43] Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M.:
Faber polynomial coefficient estimates of bi-close-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 5 (2021), 103-118.
DOI 10.23952/jnva.5.2021.1.07 |
Zbl 07312309
[44] Srivastava, H. M., Sakar, F. M., Güney, H. O.:
Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 32 (2018), 1313-1322.
DOI 10.2298/FIL1804313S |
MR 3848107 |
Zbl 07462770