Previous |  Up |  Next

Article

Keywords:
nonlinear higher-order hyperbolic equation; nonlinear source term; global existence
Summary:
We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as $t\rightarrow \infty $ by applying the Lyapunov method.
References:
[1] Arnold, V. I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics 60. Springer, New York (1978). DOI 10.1007/978-1-4757-1693-1 | MR 0690288 | Zbl 0386.70001
[2] Benaissa, A., Louhibi, N.: Global existence and energy decay of solutions to a nonlinear wave equation with a delay term. Georgian Math. J. 20 (2013), 1-24. DOI 10.1515/gmj-2013-0006 | MR 3037074 | Zbl 06152709
[3] Brenner, P., Wahl, W. von: Global classical solutions of nonlinear wave equations. Math. Z. 176 (1981), 87-121. DOI 10.1007/BF01258907 | MR 0606174 | Zbl 0457.35059
[4] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Research in Applied Mathematics 36. Wiley, Chichester (1994). MR 1359765 | Zbl 0937.93003
[5] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[6] Liu, K.: Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997), 1574-1590. DOI 10.1137/S0363012995284928 | MR 1466917 | Zbl 0891.93016
[7] Nakao, M.: Bounded, periodic and almost periodic classical solutions of some nonlinear wave equations with a dissipative term. J. Math. Soc. Japan 30 (1978), 375-394. DOI 10.2969/jmsj/03030375 | MR 0492914 | Zbl 0386.35004
[8] Nakao, M., Kuwahara, H.: Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkc. Ekvacioj, Ser. Int. 30 (1987), 135-145. MR 0915268 | Zbl 0632.35046
[9] Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), 1561-1585. DOI 10.1137/060648891 | MR 2272156 | Zbl 1180.35095
[10] Payne, L. E., Sattinger, D. H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22 (1975), 273-303. DOI 10.1007/BF02761595 | MR 0402291 | Zbl 0317.35059
[11] Pecher, H.: Die Existenz regulärer Lösungen für Cauchy- und Anfangs-Randwertprobleme nichtlinear Wellengleichungen. Math. Z. 140 (1974), 263-279 German. DOI 10.1007/BF01214167 | MR 0364891 | Zbl 0287.35069
[12] Wang, B.: Nonlinear scattering theory for a class of wave equations in $H^s$. J. Math. Anal. Appl. 296 (2004), 74-96. DOI 10.1016/j.jmaa.2004.03.050 | MR 2070494 | Zbl 1060.35099
[13] Yanbing, Y., Ahmed, M. S., Lanlan, Q., Runzhang, X.: Global well-posedness of a class of fourth-order strongly damped nonlinear wave equation. Opusc. Math. 39 (2019), 297-313. DOI 10.7494/opmath.2019.39.2.297 | MR 3897819 | Zbl 1437.35454
[14] Ye, Y.: Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation. J. Inequal. Appl. 2010 (2010), Article ID 394859, 14 pages. DOI 10.1155/2010/394859 | MR 2600191 | Zbl 1190.35161
[15] Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equations 15 (1990), 205-235. DOI 10.1080/03605309908820684 | MR 1032629 | Zbl 0716.35010
Partner of
EuDML logo