Previous |  Up |  Next

Article

Keywords:
differential inclusion; maxima; averaging
Summary:
We apply the averaging method to ordinary differential inclusions with maxima perturbed by a small parameter and illustrate the method by some examples.
References:
[1] Aubin, J.-P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften 264. Springer, Berlin (1984),\99999DOI99999 10.1007/978-3-642-69512-4 . MR 0755330 | Zbl 0538.34007
[2] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems and Control: Foundations and Applications 2. Birkhäuser, Boston (1990),\99999DOI99999 10.1007/978-0-8176-4848-0 . MR 1048347 | Zbl 0713.49021
[3] Aumann, R. J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12 (1965), 1-12. DOI 10.1016/0022-247X(65)90049-1 | MR 0185073 | Zbl 0163.06301
[4] Bainov, D. D., Hristova, S. G.: Differential Equations with Maxima. Pure and Applied Mathematics (Boca Raton) 298. CRC Press, Boca Raton (2011),\99999DOI99999 10.1201/b10877 . Zbl 1244.34001
[5] Bar, B., Lakrib, M.: Averaging method for ordinary differential inclusions with maxima. Electron. J. Differ. Equ. 2018 (2018), Article ID 115, 12 pages \99999MR99999 3831861 . MR 3831861 | Zbl 1393.34070
[6] Bourada, A., Guen, R., Lakrib, M., Yadi, K.: Some averaging results for ordinary differential inclusions. Discuss. Math., Differ. Incl. Control Optim. 35 (2015), 47-63. DOI 10.7151/dmdico.1169 | MR 3444879
[7] Deimling, K.: Multivalued Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications 1. Walter de Gruyter, Berlin (1992),\99999DOI99999 10.1515/9783110874228 . MR 1189795 | Zbl 0760.34002
[8] Gama, R., Smirnov, G.: Stability and optimality of solutions to differential inclusions via averaging method. Set-Valued Var. Anal. 22 (2014), 349-374. DOI 10.1007/s11228-013-0261-4 | MR 3207744 | Zbl 1307.34001
[9] Kichmarenko, O. D.: Averaging of differential equations with Hukuhara derivative with maxima. Int. J. Pure Appl. Math. 57 (2009), 447-457. MR 2584470 | Zbl 1190.34099
[10] Kichmarenko, O. D., Sapozhnikova, K. Y.: Full averaging scheme for differential equation with maximum. Contemp. Anal. Appl. Math. 3 (2015), 113-122. DOI 10.18532/caam.88723 | MR 3333779 | Zbl 1353.34095
[11] Klymchuk, S., Plotnikov, A., Skripnik, N.: Overview of V. A. Plotnikov's research on averaging of differential inclusions. Phys. D 241 (2012), 1932-1947. DOI 10.1016/j.physd.2011.05.004 | MR 2994333
[12] Lakrib, M.: An averaging theorem for ordinary differential inclusions. Bull. Belg. Math. Soc. - Simon. Stevin 16 (2009), 13-29. DOI 10.36045/bbms/1235574188 | MR 2498955 | Zbl 1166.34024
[13] Plotnikov, V. A., Kichmarenko, O. D.: Averaging of differential equations with maxima. Nauk. Visn. Chernivets'kogo Univ., Mat. 150 (2002), 78-82 Ukrainian \99999ZBL99999 1071.34519 .
[14] Plotnikov, V. A., Kichmarenko, O. D.: A note on the averaging method for differential equations with maxima. Iranian J. Optim. 1 (2009), 132-140 . MR 2664093
[15] Shpakovich, V. P., Muntyan, V. I.: Method of averaging for differential equations with maxima. Ukr. Math. J. 39 (1987), 543-545 translation from Ukr. Mat. Zh. 39 1987 662-665 \99999DOI99999 10.1007/BF01066476 . MR 0916865 | Zbl 0716.34090
[16] Smirnov, G. V.: Introduction to the Theory of Differential Inclusions. Graduate Studies in Mathematics 41. AMS, Providence (2002). DOI 10.1090/gsm/041 | MR 1867542 | Zbl 0992.34001
Partner of
EuDML logo