Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Motsch-Tadmor model; piecewise interaction function; processing delays; flocking
Summary:
In this paper, a generalized Motsch-Tadmor model with piecewise interaction functions and fixed processing delays is investigated. According to functional differential equation theory and correlation properties of the stochastic matrix, we obtained sufficient conditions for the system achieving flocking, including an upper bound of the time delay parameter. When the parameter is less than the upper bound, the system achieves asymptotic flocking under appropriate assumptions.
References:
[1] Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks. Dyn. Games Appl. 1 (2011), 3-49. DOI 10.1007/s13235-010-0004-1 | MR 2800784 | Zbl 1214.91091
[2] Cartabia, M. R.: Cucker-Smale model with time delay. Discrete Contin. Dyn. Syst. 42 (2022), 2409-2432. DOI 10.3934/dcds.2021195 | MR 4405273 | Zbl 7513976
[3] Chen, Y., Liu, Y., Wang, X.: Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evol. Equ. Control Theory 11 (2022), 729-748. DOI 10.3934/eect.2021023 | MR 4408103 | Zbl 7524386
[4] Choi, Y.-P., Haskovec, J.: Cucker-Smale model with normalized communication weights and time delay. Kinet. Relat. Models 10 (2017), 1011-1033. DOI 10.3934/krm.2017040 | MR 3622098 | Zbl 1357.34024
[5] Choi, Y.-P., Li, Z.: Emergent behavior of Cucker-Smale flocking particles with heterogeneous time delays. Appl. Math. Lett. 86 (2018), 49-56. DOI 10.1016/j.aml.2018.06.018 | MR 3836802 | Zbl 1408.34064
[6] Choi, Y.-P., Pignotti, C.: Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Netw. Heterog. Media 14 (2019), 789-804. DOI 10.3934/nhm.2019032 | MR 4026010 | Zbl 1435.34081
[7] Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52 (2007), 852-862. DOI 10.1109/TAC.2007.895842 | MR 2324245 | Zbl 1366.91116
[8] Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. (3) 2 (2007), 197-227. DOI 10.1007/s11537-007-0647-x | MR 2295620 | Zbl 1166.92323
[9] Dastani, M.: Programming multi-agent systems. Knowledge Engineering Review 30 (2015), 394-418. DOI 10.1017/S0269888915000077
[10] Dong, J.-G., Ha, S.-Y., Kim, D.: Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 5569-5596. DOI 10.3934/dcdsb.2019072 | MR 4026940 | Zbl 1423.34086
[11] Dong, J.-G., Ha, S.-Y., Kim, D.: On the Cucker-Smale ensemble with $q$-closest neighbors under time-delayed communications. Kinet. Relat. Models 13 (2020), 653-676. DOI 10.3934/krm.2020022 | MR 4112176 | Zbl 1459.34174
[12] Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7 (2009), 297-325. DOI 10.4310/CMS.2009.v7.n2.a2 | MR 2536440 | Zbl 1177.92003
[13] Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Models 1 (2008), 415-435. DOI 10.3934/krm.2008.1.415 | MR 2425606 | Zbl 1402.76108
[14] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Applied Mathematical Sciences 99. Springer, New York (1993). DOI 10.1007/978-1-4612-4342-7 | MR 1243878 | Zbl 0787.34002
[15] Haskovec, J.: A simple proof of asymptotic consensus in the Hegselmann-Krause and Cucker-Smale models with normalization and delay. SIAM J. Appl. Dyn. Syst. 20 (2021), 130-148. DOI 10.1137/20M1341350 | MR 4202505 | Zbl 1466.34073
[16] Haskovec, J., Markou, I.: Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinet. Relat. Models 13 (2020), 795-813. DOI 10.3934/krm.2020027 | MR 4112181 | Zbl 1462.34100
[17] Jin, C.: Flocking of the Motsch-Tadmor model with a cut-off interaction function. J. Stat. Phys. 171 (2018), 345-360. DOI 10.1007/s10955-018-2006-0 | MR 3779056 | Zbl 1391.34081
[18] Liu, Z., Liu, Y., Li, X.: Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete Contin. Dyn. Syst., Ser. B 26 (2021), 3693-3716. DOI 10.3934/dcdsb.2020253 | MR 4251853 | Zbl 1470.34228
[19] Liu, Z., Liu, Y., Wang, X.: Emergence of time-asymptotic flocking for a general Cucker-Smale-type model with distributed time delays. Math. Methods Appl. Sci. 43 (2020), 8657-8668. DOI 10.1002/mma.6525 | MR 4151366 | Zbl 1465.34083
[20] Liu, Y., Wu, J.: Flocking and asymptotic velocity of the Cucker-Smale model with processing delay. J. Math. Anal. Appl. 415 (2014), 53-61. DOI 10.1016/j.jmaa.2014.01.036 | MR 3173153 | Zbl 1308.92111
[21] Liu, Y., Wu, J., Wang, X.: Collective periodic motions in a multiparticle model involving processing delay. Math. Methods Appl. Sci. 44 (2021), 3280-3302. DOI 10.1002/mma.6939 | MR 4227930 | Zbl 1478.34091
[22] Morales, J., Peszek, J., Tadmor, E.: Flocking with short-range interactions. J. Stat. Phys. 176 (2019), 382-397. DOI 10.1007/s10955-019-02304-5 | MR 3980614 | Zbl 1419.92034
[23] Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144 (2011), 923-947. DOI 10.1007/s10955-011-0285-9 | MR 2836613 | Zbl 1230.82037
[24] Tadmor, E.: On the mathematics of swarming: Emergent behavior in alignment dynamics. Notices Am. Math. Soc. 68 (2021), 493-503. DOI 10.1090/noti2254 | MR 4228123 | Zbl 1478.35212
[25] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995), 1226-1229. DOI 10.1103/PhysRevLett.75.1226 | MR 3363421
[26] Wang, X., Wang, L., Wu, J.: Impacts of time delay on flocking dynamics of a two-agent flock model. Commun. Nonlinear Sci. Numer. Simul. 70 (2019), 80-88. DOI 10.1016/j.cnsns.2018.10.017 | MR 3872544 | Zbl 1464.92293
Partner of
EuDML logo