[3] Chen, Y., Liu, Y., Wang, X.:
Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evol. Equ. Control Theory 11 (2022), 729-748.
DOI 10.3934/eect.2021023 |
MR 4408103 |
Zbl 7524386
[10] Dong, J.-G., Ha, S.-Y., Kim, D.:
Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph. Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 5569-5596.
DOI 10.3934/dcdsb.2019072 |
MR 4026940 |
Zbl 1423.34086
[15] Haskovec, J.:
A simple proof of asymptotic consensus in the Hegselmann-Krause and Cucker-Smale models with normalization and delay. SIAM J. Appl. Dyn. Syst. 20 (2021), 130-148.
DOI 10.1137/20M1341350 |
MR 4202505 |
Zbl 1466.34073
[19] Liu, Z., Liu, Y., Wang, X.:
Emergence of time-asymptotic flocking for a general Cucker-Smale-type model with distributed time delays. Math. Methods Appl. Sci. 43 (2020), 8657-8668.
DOI 10.1002/mma.6525 |
MR 4151366 |
Zbl 1465.34083
[25] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.:
Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995), 1226-1229.
DOI 10.1103/PhysRevLett.75.1226 |
MR 3363421