[1] Beer, R. D.:
On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav. 3 (1995), 469-509 \99999DOI99999 10.1177/1059712395003004 .
DOI 10.1177/105971239500300405
[2] Beer, R. D.:
Parameter space structure of continuous-time recurrent neural networks. Neural Comput. 18 (2006), 3009-3051 \99999DOI99999 10.1162/neco.2006.18.12.3009 .
MR 2265210 |
Zbl 1107.68075
[3] Breakspear, M.: Dynamic models of large-scale brain activity. Nature Neurosci. 20 (2017), 340-352 \99999DOI99999 10.1038/nn.4497 .
[4] Brunel, N.:
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8 (2000), 183-208 \99999DOI99999 10.1023/A:1008925309027 .
Zbl 1036.92008
[5] A. Ecker, B. Bagi, E. Vértes, O. Steinbach-Németh, M. R. Karlócai, O. I. Papp, I. Mik-lós, N. Hájos, T. F. Freund, A. I. Gulyás, S. Káli: Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3. eLife 11 (2022), Article ID e71850, 29 pages \99999DOI99999 10.7554/eLife.71850 .
[6] Ermentrout, B.:
Neural networks as spatio-temporal pattern-forming systems. Rep. Progr. Phys. 61 (1998), Article ID 353, 78 pages.
DOI 10.1088/0034-4885/61/4/002
[7] Ermentrout, B., Terman, D. H.:
Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics 35. Springer, New York (2010),\99999DOI99999 10.1007/978-0-387-87708-2 .
MR 2674516 |
Zbl 1320.92002
[8] Fasoli, D., Cattani, A., Panzeri, S.: The complexity of dynamics in small neural circuits. PLoS Comput. Biology 12 (2016), Article ID e1004992, 35 pages \99999DOI99999 10.1371/journal.pcbi.1004992 .
[9] Fasoli, D., Cattani, A., Panzeri, S.:
Bifurcation analysis of a sparse neural network with cubic topology. Mathematical and Theoretical Neuroscience Springer INdAM Series 24. Springer, Cham (2017), 87-98 \99999DOI99999 10.1007/978-3-319-68297-6_5 .
MR 3793028 |
Zbl 1401.92026
[10] Govaerts, W., Kuznetsov, Y. A., DeWitte, V., Dhooge, A., Meijer, H. G. E., Mestrom, W., Rietand, A. M., Sautois, B.: MATCONT and CL_MATCONT: Continuation Toolboxes in Matlab. Gent University and Utrecht University, Gent and Utrecht (2011) .
[11] Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 1 (1988), 17-61 \99999DOI99999 10.1016/0893-6080(88)90021-4 .
[12] Hopfield, J. J.:
Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (1982), 2554-2558 \99999DOI99999 10.1073/pnas.79.8.255 .
MR 0652033 |
Zbl 1369.92007
[13] Hopfield, J. J.:
Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1984), 3088-3092 \99999DOI99999 10.1073/pnas.81.10.3088 .
Zbl 1371.92015
[14] Kuznetsov, Y. A.:
Elements of Applied Bifurcation Theory. Applied Mathematical Sciences 112. Springer, New York (2004),\99999DOI99999 10.1007/978-1-4757-3978-7 .
MR 2071006 |
Zbl 1082.37002
[15] Perko, L.:
Differential Equations and Dynamical Systems. Texts in Applied Mathematics 7. Springer, New York (2001),\99999DOI99999 10.1007/978-1-4613-0003-8 .
MR 1801796 |
Zbl 0973.34001
[16] Trappenberg, T.:
Fundamentals of Computational Neuroscience. Oxford University Press, Oxford (2010),\99999MR99999 2583115 .
MR 2583115 |
Zbl 1179.92012
[17] Windisch, A., Simon, P. L.:
The dynamics of the Hopfield model for homogeneous weight matrix. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 64 (2021), 235-247.
MR 4612555 |
Zbl 07541738