Previous |  Up |  Next

Article

Keywords:
Lucas number; Mersenne number; Diophantine equation; linear forms in logarithm
Summary:
Let $(L_n)_{n\geq 0}$ be the Lucas sequence. We show that the Diophantine equation $ L_n-L_m=M_k$ has only the nonnegative integer solutions $(n,m,k)= (2,0,1)$, $(3, 1, 2)$, $(3, 2, 1)$, $(4, 3, 2)$, $(5, 3, 3)$, $(6, 2, 4)$, $(6, 5, 3)$ where $ M_k=2^k-1 $ is the $k$th Mersenne number and $ n > m$.
References:
[1] Baker A., Davenport H.: The equations $3x^2-2 =y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079
[2] Bravo J. J., Gómez C. A.: Mersenne $k$-Fibonacci numbers. Glas. Matemat. Ser. III 51(71), (2016), no. 2, 307–319. DOI 10.3336/gm.51.2.02 | MR 3580200
[3] Bravo J. J., Luca F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences. Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. DOI 10.5486/PMD.2013.5390 | MR 3066434
[4] Bravo J. J., Luca F.: Powers of two as sums of two Lucas numbers. J. Integer Seq. 17 (2014), no. 8, Article 14.8.3, 12 pages. MR 3248227
[5] Demirtürk Bitim B.: On the Diophantine equation $ L_n-L_m=2 \cdot 3^a$. Period. Math. Hungar. 79 (2019), no. 2, 210–217. DOI 10.1007/s10998-019-00287-0 | MR 4022203
[6] Dujella A., Pethö A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR 1645552
[7] Erduvan F., Keskin R.: Nonnegative integer solutions of the equation $ F_n - F_m=5^a$. Turkish J. Math. 43 (2019), no. 3, 1115–1123. DOI 10.3906/mat-1810-83 | MR 3962520
[8] Hardy G. H., Wright E. M.: An Introduction to the Theory of Numbers. The Clarendon Press, Oxford University Press, New York, 1979. MR 0568909
[9] Kebli S., Kihel O., Larone J., Luca F.: On the nonnegative integer solutions to the equation $ F_n \pm F_m=y^a$. J. Number Theory 220 (2021), 107–127. DOI 10.1016/j.jnt.2020.08.004 | MR 4177538
[10] Koshy T.: Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001. MR 1855020
[11] Matveev E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252
[12] Normenyo B. V., Luca F., Togbé A.: Repdigits as sums of four Fibonacci or Lucas numbers. J. Integer Seq. 21 (2018), no. 7, Art. 18.7.7, 30 pages. MR 3858063
[13] Şiar Z., Keskin R.: On the Diophantine equation $F_n-F_m=2^a$. Colloq. Math. 159 (2020), no. 1, 119–126. DOI 10.4064/cm7485-12-2018 | MR 4036721
[14] Trojovský P.: On the order of appearance of the difference of two Lucas numbers. Miskolc Math. Notes 19 (2018), no. 1, 641–648. DOI 10.18514/MMN.2018.1750 | MR 3895605
Partner of
EuDML logo