[1] Baker A., Davenport H.:
The equations $3x^2-2 =y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
MR 0248079
[3] Bravo J. J., Luca F.:
On a conjecture about repdigits in $k$-generalized Fibonacci sequences. Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639.
DOI 10.5486/PMD.2013.5390 |
MR 3066434
[4] Bravo J. J., Luca F.:
Powers of two as sums of two Lucas numbers. J. Integer Seq. 17 (2014), no. 8, Article 14.8.3, 12 pages.
MR 3248227
[6] Dujella A., Pethö A.:
A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306.
MR 1645552
[7] Erduvan F., Keskin R.:
Nonnegative integer solutions of the equation $ F_n - F_m=5^a$. Turkish J. Math. 43 (2019), no. 3, 1115–1123.
DOI 10.3906/mat-1810-83 |
MR 3962520
[8] Hardy G. H., Wright E. M.:
An Introduction to the Theory of Numbers. The Clarendon Press, Oxford University Press, New York, 1979.
MR 0568909
[9] Kebli S., Kihel O., Larone J., Luca F.:
On the nonnegative integer solutions to the equation $ F_n \pm F_m=y^a$. J. Number Theory 220 (2021), 107–127.
DOI 10.1016/j.jnt.2020.08.004 |
MR 4177538
[10] Koshy T.:
Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
MR 1855020
[11] Matveev E. M.:
An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269.
MR 1817252
[12] Normenyo B. V., Luca F., Togbé A.:
Repdigits as sums of four Fibonacci or Lucas numbers. J. Integer Seq. 21 (2018), no. 7, Art. 18.7.7, 30 pages.
MR 3858063