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Mersenne numbers as a difference of two Lucas numbers

Murat Alan

Abstract. Let (Ln)n≥0 be the Lucas sequence. We show that the Diophantine
equation Ln − Lm = Mk has only the nonnegative integer solutions (n,m, k) =
(2, 0, 1), (3, 1, 2), (3, 2, 1), (4, 3, 2), (5, 3, 3), (6, 2, 4), (6, 5, 3) where Mk = 2k − 1
is the kth Mersenne number and n > m.

Keywords: Lucas number; Mersenne number; Diophantine equation; linear forms
in logarithm

Classification: 11B39, 11J86, 11D61

1. Introduction

Let (Fn)n≥0 and (Ln)n≥0 be the Fibonacci and Lucas sequences given by

F0 = 0, F1 = 1, L0 = 2, L1 = 1, Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln for

n ≥ 0, respectively. Because of their interesting properties, these two sequences

have been investigated from various point of view in many papers. Especially

over the last decade products, sums and differences of these two sequences have

been investigated by a number of authors, see for example [4], [5], [7], [9], [12],

[13], [14]. We refer [10] for a detailed information on these sequences.

Recall that Mersenne numbers are the numbers of the form 2k − 1, where k

is a nonnegative integer. In [2], Mersenne numbers in a generalized Fibonacci

numbers are found. In this study, we search the differences of two Lucas numbers

which are Mersenne numbers. More precisely the aim of this paper is to prove

the following theorem.

Theorem 1. The equation

(1) Ln − Lm = 2k − 1, n > m,

has only the nonnegative integer solutions (n,m, k) ∈ {(2, 0, 1), (3, 1, 2), (3, 2, 1),
(4, 3, 2), (5, 3, 3), (6, 2, 4), (6, 5, 3)}.

The proof of the above theorem mainly depends on two results one of them

gives us a general lower bound for linear forms in logarithms and the other one
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is a version of reduction method given in Baker–Davenport lemma, see [1]. We

summarize these two results in the next chapter. It is worth to note that when it

is needed we used the software Maple for all calculations and computations.

2. Preliminaries

It is well-known that all Lucas numbers Ln can be written as

Ln = αn + βn, n ≥ 0,

where

α :=
1 +

√
5

2
and β :=

1−
√
5

2

are the roots of the equation x2 − x − 1 = 0. This is the Binet formula of Lucas

numbers. By using the Binet formula, one can see that,

(2) αn−1 ≤ Ln ≤ 2αn

holds for all n > 0.

Lemma 2. If n ≡ m (mod 3) then Ln ≡ Lm (mod 2)

Proof: Assume that n ≡ m (mod 3). Assume also without loss of generality

that n ≥ m and let n = m + 3k for some nonnegative integer k. Then the

proof follows by induction on k, since Lm+3 = Lm+2 + Lm+1 = 2Lm+1 + Lm ≡
Lm (mod 2). �

Let η be an algebraic number of degree d with minimal polynomial

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(X − η(i)),

where the ai’s are relatively prime integers with a0 > 0 and the η(i)’s are conju-

gates of η. The logarithmic height of η is defined by

h(η) =
1

d

(

log a0 +

d
∑

i=1

log(max{|η(i)|, 1})
)

.

In particular, for a rational number p/q with gcd(p, q) = 1 and q > 0, h(p/q) =

logmax{|p|, q}. The following properties are very useful for calculation of h(η):

◦ h(η ± γ) ≤ h(η) + h(γ) + log 2.

◦ h(ηγ±1) ≤ h(η) + h(γ).

◦ h(ηs) = |s|h(η).
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Theorem 3 (Matveev’s theorem, [11]). Assume that γ1, . . . , γt are positive real

algebraic numbers in a real algebraic number field K of degree dK, b1, . . . , bt are

rational integers, and

Λ := γb1
1 · · · γbt

t − 1

is not zero. Then

|Λ| > exp
(

− 1.4 · 30t+3 · t4.5 · d2
K
(1 + log dK)(1 + logB)A1 · · ·At

)

,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{dKh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

In [6, Lemma 5 (a)], A. Dujella and A. Pethő give a version of the reduction

method based on the Baker–Davenport lemma, see [1]. The following lemma

is from [3, Lemma 4] which is a variation of [6, Lemma 5 (a)] and it is useful

for reducing some upper bounds on the variables. For a real number θ, we put

‖θ‖ = min{|θ − n| : n ∈ Z}, the distance from θ to the nearest integer.

Lemma 4. Let M be a positive integer, let p/q be a convergent of the continued

fraction of the irrational γ such that q > 6M , and let A,B, µ be some real

numbers with A > 0 and B > 1. If ε := ‖µq‖ − M‖γq‖ > 0, then there is no

solution to the inequality

0 < |uγ − v + µ| < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

3. Proof of Theorem 1

Proof of Theorem 1: Assume that the equation (1) holds. A quick computa-

tion with Maple shows that the equation (1) has the solutions (n,m, k) ∈ {(2, 0, 1),
(3, 1, 2), (3, 2, 1), (4, 3, 2), (5, 3, 3), (6, 2, 4), (6, 5, 3)} in nonnegative integers in the

range 0 ≤ m < n ≤ 200. If n−m = 1 and m 6= 0 or n−m = 2 , then the equa-

tion (1) turns into the equations Lm−1 = 2k − 1 and Lm+1 = 2k − 1, respectively.

All solutions of these two equations only come from the equalities L1 + 1 = 2,

L2 + 1 = 22 and L4 + 1 = 28, see [4], which corresponds already known solu-

tions (n,m, k) ∈ {(3, 2, 1), (4, 3, 2), (6, 5, 3)} and (n,m, k) ∈ {(2, 0, 1), (3, 1, 2),
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(5, 3, 3)} of (1). Also, by Lemma 2, the case n−m = 3 is clearly false. So we will

take n−m ≥ 4 and n > 200.

From (1), we may get a relation between variables n and k for future reference.

Indeed from (1) and (2) we have that

2k−1 ≤ 2k − 1 = Ln − Lm < Ln ≤ 2αn < 2n+1,

and hence we observe that

(3) k < n+ 2.

Using Binet formula for Lucas sequences we rewrite equation (1) as

αn + βn − Lm = 2k − 1,

αn − 2k = Lm − βn − 1.

So
∣

∣

∣
1− 2k

αn

∣

∣

∣
<

Lm

αn
+

|β|n
αn

+
1

αn
<

2αm

αn
+

1

α2n
+

1

αn
<

4

αn−m
.

Hence we have that

(4) |Λ1| :=
∣

∣

∣
1− 2k

αn

∣

∣

∣
<

4

αn−m
.

Now we may apply Theorem 3 to the left side of the inequality (4) with η1 := 2,

η2 := α and b1 := k, b2 := −n. Clearly η1, η2 ∈ K = Q(
√
5), and hence we take

dK = 2, the degree of the number field K. Since αn 6= 2k ∈ Z for n > 0, we see

that Λ1 is nonzero. Further since h(η1) = log 2 and h(η2) = (1/2) logα, we take

A1 = 2 log 2, A2 = logα. By (3) we know that k < n+ 2, so we take

B := max{|bi|} = max{k, n} < n+ 2.

Now we are ready to apply Theorem 3 to the inequality (4) and we get that

log |Λ1| > −1.4× 305 × 24.5 × 22(1 + log 2)(1 + log (n+ 2))2 log 2 · logα,

which implies that

(5) log |Λ1| > 3.48× 109(1 + log (n+ 2)).

On the other hand, from (4), we know that

(6) log |Λ1| < log 4− (n−m) logα.

From (5) and (6) we find that

(7) n−m < 7.24× 109 × (1 + log (n+ 2)).
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Now we rewrite equation (1) in the Binet formula as

αn + βn − αm − βm = 2k − 1,

αn − αm − 2k = −βn + βm − 1,

αn(1 − αm−n)− 2k = −βn + βm − 1.

So from the last equation above we write

∣

∣

∣
1− 2k

αn(1− αm−n)

∣

∣

∣
<

1

αn(1− αm−n)
(|β|n + |β|m + 1) <

3

αn
,

where we used the fact that |β|n + |β|m + 1 < 2.01 and (1 − αm−n)−1 < 1.4 for

m ≥ 0, n ≥ 200 and n−m ≥ 3. So

(8) |Λ2| :=
∣

∣

∣
1− 2k

αn(1 − αm−n)

∣

∣

∣
<

3

αn
.

Let η1 := 2, η2 := α, η3 := (1 − αm−n)−1 and b1 := k, b2 := −n, b3 := 1. Since

η1, η2 and η3 are elements of the quadratic number field K = Q(
√
5), we take

dK = 2, the degree of the number field K. Since h(η1) = log 2, h(η2) = (1/2) logα

and

h(η3) = h((1− αm−n)−1) = h(1− αm−n)

≤ |m− n|h(α) + log 2 =
n−m

2
logα+ log 2

we take

A1 = 2 log 2, A2 = logα and A3 = (n−m) logα+ 2 log 2.

By (3), k < n+ 2, so we take

B := max{|bi|} = max{n, k, 1} < n+ 2.

Note that Λ2 is nonzero. Indeed if it were zero then we would have that αn −
αm = 2k. Conjugating in K, we get that βn − βm = −2k and adding these two

equation we get that Ln − Lm = 0, which is false since n > m. Thus we apply

Theorem 3 to Λ2 given in (8) and we get that

(9)
log (|Λ2|) > − 1.4 · 306 · 34.5 · 22(1 + log 2)(1 + log(n+ 2))

× 2 log 2 · logα · ((n−m) logα+ 2 log 2).

On the other hand, from (8), we know that

(10) log |Λ2| < log 3− n logα.
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Combining (9) and (10) we get that

(11) n < 1.35 · 1012 × (1 + log(n+ 2))× ((n−m) logα+ 2 log 2).

From the inequality (11) together with (7), it follows that

(12) n < 1.8 · 1025.

Now we use the theory of continued fractions to reduce the upper bound on n−m.

More precisely we show that n−m < 137. To this end, assume that n−m ≥ 137.

Let

(13) Γ1 := k log 2− n logα

so that

|Λ1| := | exp (Γ1)− 1| < 4

αn−m
<

1

2
,

and hence we get that

|Γ1| <
8

αn−m
.

So from (13), we write

∣

∣

∣

logα

log 2
− k

n

∣

∣

∣
<

8

nαn−m log 2
.

Since 2.8 · 1028 < α137 log 2, we have the inequality

16n < 16 · 1.8 · 1025 < 2.9 · 1026 < α137 log 2 ≤ αn−m log 2.

Thus we write
∣

∣

∣

logα

log 2
− k

n

∣

∣

∣
<

8

nαn−m log 2
<

1

2n2
,

which means that k/n is a convergent of continued fractions of irrational τ :=

logα/log 2, say pk/qk. Since pk and qk are relatively prime integers we get that

qk ≤ n < 1.8× 1025. Let [a0, a1, a2, a3, a4, . . .] = [0, 1, 2, 3, 1, . . .] be the continued

fraction expansion of τ . By Maple, we see that k ≤ 56 and max{ai} = 134 for

i = 1, 2, . . . , 56. Thus, from the well known property of continued fractions [8,

Theorem 163], we write

1

136n2
<

1

(ak + 2)n2
<

∣

∣

∣

logα

log 2
− k

n

∣

∣

∣
<

8

nαn−m log 2
,

which means

2.7 · 1025 <
α137 log 2

136 · 8 ≤ αn−m log 2

136 · 8 < n,
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a contradiction since n < 1.8 × 1025. So we conclude that n − m < 137. By

substituting this upper bound for n−m into (11) we get that

(14) n < 1.35 · 1012 × (1 + log(n+ 2))× (137 logα+ 2 log 2),

which implies that

(15) n < 4 · 1015.

Let

(16) Γ2 := k log 2− n logα− log (1− αm−n)

so that

|Λ2| := | expΓ2 − 1| < 3

αn
<

1

2
.

Then

|Γ2| <
6

αn
.

So, from (16),

(17) 0 <
∣

∣

∣
k
log 2

logα
− n− log (1− αm−n)

logα

∣

∣

∣
<

6

αn logα
.

Now we take

M := 4 · 1015 + 2 > n+ 2 > k and τ :=
log 2

logα
.

Then, in the continued fraction expansion of τ , we take q50, the denominator of

the 50th convergent of τ , which exceeds 6M . Now with the help of Maple we

calculate

εn−m := ‖µn−mq50‖ −M‖τq50‖

for each n−m ∈ {4, . . . , 137} where

µn−m := − log (1− αm−n)

logα
, q50 = 9041151586240430787539

and we get that

0.000012 < εn−m for all n−m ∈ {4, . . . , 137}

except for n − m = 6, since for n − m = 6, ε6 < 0. So we need to handle this

case separately. But, from Lemma 2, this is not the case. So n−m 6= 6.
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Let A := 6/logα, B := α and ω := n . Thus from Lemma (4) we get that the

inequality (17) has no solution for

n >
log (Aq50/0.000012)

logB
≥ 133.8.

So we get that n < 134 which is a contradiction since n > 200. This completes

the proof. �
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