[1] Alber, Y. I., Iusem, A. N., Solodov, M. V.:
On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81 (1998), 23-35.
DOI |
MR 1617701
[2] Auslender, A., Teboulle, M.:
Interior gradient and epsilon-subgradient descent methods for constrained convex minimization. Math. Oper. Res. 29 (2004), 1-26.
DOI |
MR 2065711
[3] Bastianello, N., Dall'Anese, E.:
Distributed and inexact proximal gradient method for online convex optimization. In: Proc. European Control Conf. 2021, pp. 2432-2437.
DOI
[4] Bertsekas, D. P.:
Convex optimization algorithms. Athena Scientific, Belmont 2015.
MR 3558548
[5] Cheng, S., Liang, S.:
Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 559-577.
DOI |
MR 4131743
[6] Correa, R., Lemaréchal, C.:
Convergence of some algorithms for convex minimization. Math. Program. 62 (1993), 261-275.
DOI |
MR 1247617
[7] Devolder, O., Glineur, F., Nesterov, Y.:
First-order methods of smooth convex optimization with inexact oracle. Math. Program. 146 (2014), 37-75.
DOI |
MR 3232608
[8] Duchi, J. C., Agarwal, A., Wainwright, M. J.:
Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Autom. Control 57 (2011), 592-606.
DOI |
MR 2932818
[9] Jakovetić, D., Xavier, J., Moura, J. M.:
Fast distributed gradient methods. IEEE Trans. Automat. Control 59 (2014), 1131-1146.
DOI |
MR 3214204
[10] Kiwiel, K. C.:
Convergence of approximate and incremental subgradient methods for convex optimization. SIAM J. Optim. 14 (2004), 807-840.
DOI |
MR 2085944
[11] Li, P., Hu, J.:
A solution strategy for distributed uncertain economic dispatch problems via scenario theory. Control Theory Technol. 19 (2021), 499-506.
DOI |
MR 4356235
[12] Li, P., Hu, J., Qiu, L., Zhao, Y., Ghosh, B. K.:
A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst. 9 (2022), 356-366.
DOI |
MR 4450544
[13] Li, P., Zhao, Y., Hu, J., Zhang, Y., Ghosh, B. K.:
Distributed initialization-free algorithms for multi-agent optimization problems with coupled inequality constraints. Neurocomputing 407 (2020), 155-162.
DOI
[14] Liu, S., Qiu, Z., Xie, L.:
Convergence rate analysis of distributed optimization with projected subgradient algorithm. Automatica 83 (2017), 162-169.
DOI |
MR 3680426
[15] Lou, Y., Shi, G., Johansson, K., Hong, Y.:
Approximate projected consensus for convex intersection computation: Convergence analysis and critical error angle. IEEE Trans. Automat. Control 59 (2014), 1722-1736.
DOI |
MR 3232068
[16] Nedić, A., Bertsekas, D. P.:
The effect of deterministic noise in subgradient methods. Math. Program. 125 (2010), 75-99.
DOI |
MR 2718695
[17] Nedić, A., Liu, J.:
Distributed optimization for control. Ann. Rev. Control Robot. Auton. Syst. 1 (2018), 77-103.
DOI
[18] Nedić, A., Olshevsky, A., Shi, W.:
Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J. Optim. 27 (2017), 2597-2633.
DOI |
MR 3738851
[19] Nedic, A., Ozdaglar, A.:
Distributed subgradient methods for multi-agent optimization. IEEE Trans. Automat. Control 54 (2009), 48-61.
DOI |
MR 2478070
[20] Nedić, A., Ozdaglar, A., Parrilo, P. A.:
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938.
DOI |
MR 2654432
[21] Polyak, B.:
Introduction to optimization. Optimization Software Inc., New York 1987.
MR 1099605
[22] Qu, G., Li, N.:
Harnessing smoothness to accelerate distributed optimization. IEEE Trans. Control Netw. Syst. 5 (2018), 1245-1260.
DOI |
MR 3861009
[23] Rasch, J., Antonin, C.:
Inexact first-order primal-dual algorithms. Comput. Optim. Appl. 76 (2020), 381-430.
DOI |
MR 4098836
[24] Rockafellar, R. T.:
Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), 877-898.
DOI |
MR 0410483 |
Zbl 0358.90053
[25] Shi, G., Johansson, K. H., Hong, Y.:
Reaching an optimal consensus: dynamical systems that compute intersections of convex sets. IEEE Trans. Automat. Control 58 (2013), 610-622.
DOI |
MR 3029459
[26] Shi, W., Ling, Q., Wu, G., Yin, W.:
{EXTRA}: An exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25 (2015), 944-966.
DOI |
MR 3343366
[27] Tang, Y., Deng, Z., Hong, Y.:
Optimal output consensus of high-order multiagent systems with embedded technique. IEEE Trans. Cybernet. 49 (2019), 1768-1779.
DOI
[28] Tang, Y., Wang, X.:
Optimal output consensus for nonlinear multiagent systems with both static and dynamic uncertainties. IEEE Trans. Automat. Control 66 (2021), 1733-1740.
DOI |
MR 4240200
[29] Tang, Y., Zhu, K.:
Optimal consensus for uncertain multi-agent systems by output feedback. Int. J. Robust Nonlinear Control 32 (2022), 2084-2099.
DOI |
MR 4384879
[30] Xi, C., Khan, U. A.:
Distributed subgradient projection algorithm over directed graphs. IEEE Trans. Automat. Control 62 (2017), 3986-3992.
DOI |
MR 3684332
[31] Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong, Y., Wang, H., Lin, Z., Johansson, K. H.:
A survey of distributed optimization. Ann. Rev. Control 47 (2019), 278-305.
DOI |
MR 3973217
[32] Yi, P., Hong, Y., Liu, F.:
Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Syst. Control Lett. 83 (2015), 45-52.
DOI |
MR 3373270 |
Zbl 1327.93033
[33] Zeng, X., Yi, P., Hong, Y.:
Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2017), 5227-5233.
DOI |
MR 3708893
[34] Zhang, Y., Deng, Z., Hong, Y.:
Distributed optimal coordination for multiple heterogeneous Euler–Lagrangian systems. Automatica 79 (2017), 207-213.
DOI |
MR 3627983
[35] Zhu, K., Tang, Y.: Primal-dual $\varepsilon$-subgradient method for distributed optimization. J. Syst. Sci. Complex. (2022), accepted.