[1] Antczak, T.:
Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Sci. 37 (2017), 1133-1150.
DOI |
MR 3657212
[2] Baranwal, A., Jayswal, A., Preeti:
Robust duality for the uncertain multitime control optimization problems. Int. J. Robust Non. Control. 32 (2022), 5837-5847.
DOI |
MR 4436071
[3] Boczek, M., Kaluszka, M.:
On the minkowski-holder type inequalities for generalized sugeno integrals with an application. Kybernetika 52 (2016), 329-347.
DOI |
MR 3532510
[4] Hanson, M. A.:
Bounds for functionally convex optimal control problems. J. Math. Anal. Appl. 8 (1964), 84-89.
DOI |
MR 0158797
[5] Hartman, P., Stampacchia, G.:
On some non-linear elliptic differential-functional equations. Acta Math. 115 (1966), 271-310.
DOI |
MR 0206537
[6] Jayswal, A., Preeti:
An exact minimax penalty function approach to solve multitime variational problems. RAIRO Oper. Res.54 (2020), 637-652.
DOI |
MR 4075324
[7] Jayswal, A., and, S. Singh, Kurdi, A.:
Multitime multiobjective variational problems and vector variational-like inequalities. Eur. J. Oper. Res. 254 (2016), 739-745.
DOI |
MR 3508868
[8] Jayswal, A., Stancu-Minasian, I., Ahmad, I.:
On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127.
DOI |
MR 2862082
[9] Jha, S., Das, P., Bandhyopadhyay, S.:
Characterization of $LU$-efficiency and saddle-point criteria for $F$-approximated multiobjective interval-valued variational problems. Results Control Optim. 4 (2021), 100044.
DOI
[10] Li, X., Li, Y., Zheng, W.:
Division schemes under uncertainty of claims. Kybernetika 57 (2021), 840-855.
DOI |
MR 4363240
[11] Liu, Y.: Variational Inequalities and Optimization Problems. PhD. Thesis, University of Liverpool, 2015.
[12] Moore, R. E.:
Interval Analysis. Prentice-Hall, Englandeood Cliffs, NJ 1966.
MR 0231516
[13] Moore, R. E.:
Methods and applications of interval analysis. SIAM, Studies in Appllied Mathematics 2, Philadelphia 1979.
MR 0551212
[14] Roubicek, T.:
Evaluation of clarke's generalized gradient in optimization of variational inequalities. Kybernetika 25 (1989), 157-168.
DOI |
MR 1010179
[15] Ruiz-Garzón, G., Osuna-Gómez, R., Ruiz-Zapatero, J.:
Mixed variational inequality interval-valued problem: Theorems of existence of solutions. Taiwan. J. Math. 1 (2022), 1-24.
DOI |
MR 4515698
[16] Treanţ\u{a}, S.:
On a new class of interval-valued variational control problems. In: Metric Fixed Point Theory, p. 211-226. Springer, 2021.
MR 4380999
[17] Treanţ\u{a}, S.:
Characterization results of solutions in interval-valued optimization problems with mixed constraints. J. Glob. Optim. 82 (2022), 951-964.
DOI |
MR 4404656
[18] Treanţ\u{a}, S.:
On a class of interval-valued optimization problems. Contin. Mech. Thermodyn. 34 (2022), 617-626.
DOI |
MR 4382652
[19] Treanţa, S.:
On some vector variational inequalities and optimization problems. AIMS Math. 7 (2022), 14434-14443.
DOI |
MR 4443397
[20] Zhang, J., Liu, S., Li, L., Feng, Q.:
The $KKT$ optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 8 (2014), 607-631.
DOI 10.1007/s11590-012-0601-6 |
MR 3163292
[21] Zhang, J., Zheng, Q., Ma, X., Li, L.:
Relationships between interval-valued vector optimization problems and vector variational inequalities. Fuzzy Optim. Decis. Mak. 15 (2016), 33-55.
DOI |
MR 3460509