Previous |  Up |  Next

Article

Keywords:
consensus; lower-triangular; nonlinear multi-agent systems; measurement noises; controller sensitivity; output feedback
Summary:
In this paper, a novel consensus algorithm is presented to handle with the leader-following consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown controller and measurement sensitivities under a given undirected topology. As distinguished from the existing results, the proposed consensus algorithm can tolerate to a relative wide range of controller and measurement sensitivities. We present some important matrix inequalities, especially a class of matrix inequalities with multiplicative noises. Based on these results and a dual-domination gain method, the output consensus error with unknown measurement noises can be used to construct the compensator for each follower directly. Then, a new distributed output feedback control is designed to enable the MASs to reach consensus in the presence of large controller perturbations. In view of a Lyapunov function, sufficient conditions are presented to guarantee that the states of the leader and followers can achieve consensus asymptotically. In the end, the proposed consensus algorithm is tested and verified by an illustrative example.
References:
[1] Ali, M. S., Agalya, R., Shekher, V., Joo, Y. H.: Non-fragile sampled data control for stabilization of non-linear multi-agent system with additive time varying delays, Markovian jump and uncertain parameters. Nonlinear Analysis: Hybrid Systems 36 (2020), 100830. DOI  | MR 4037732
[2] Amini, A., Azarbahram, A., Sojoodi, M.: ${H_\infty }$ Consensus of nonlinear multi-agent systems using dynamic output feedback controller: an LMI approach. Nonlinear Dynamics 85 (2016), 3, 1865-1886. DOI  | MR 3520161
[3] Bidram, A., Davoudi, A., Lewis, F. L., Guerrero, J. M.: Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Systems 28 (2013), 3, 3462-3470. DOI  | MR 3281448
[4] Cai, H., Hu, G., Lewis, F. L., Davoudi, A.: A distributed feedforward approach to cooperative control of AC microgrids. IEEE Trans. Power Systems 31 (2016), 5, 4057-4067. DOI 
[5] Chen, M., Jiang, B., Guo, W. W.: Fault-tolerant control for a class of non-linear systems with dead-zone. Int. J. Systems Science 47 (2016), 7, 1689-1699. DOI  | MR 3441621
[6] Chen, C. C., Qian, C., Sun, Z. Y., Liang, Y. W.: Global output feedback stabilization of a class of nonlinear systems with unknown measurements sensitivity. IEEE Trans. Automat. Control 63 (2018), 7, 2212-2217. DOI  | MR 3820224
[7] Chen, G., Song, Y. D.: Robust fault-tolerant cooperative control of multi-agent systems: A constructive design method. J. Franklin Inst. 352 (2015), 10, 4045-4066. DOI  | MR 3391443
[8] Chen, J., Zhang, W., Cao, Y. Y., Chu, H.: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1336-1347. DOI 
[9] Deng, C., Zhang, D., Feng, G.: Resilient practical cooperative output regulation for MASs with unknown switching exosystem dynamics under DoS attacks. Automatica 139 (2022), 110172. DOI  | MR 4383035
[10] Du, H., Jia, R.: Synchronization of a class of nonlinear multi-agent systems with sampled-data information. Nonlinear Dynamics 82 (2015), 3, 1483-1492. DOI  | MR 3412503
[11] Fax, J. A., Murray, R. M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control 49 (2004), 9, 1465-1476. DOI  | MR 2086912
[12] Guo, Z., Xue, H., Pan, Y.: Neural networks-based adaptive tracking control of multi-agent systems with output-constrained and unknown hysteresis. Neurocomputing 458 (2021), 24-32. DOI 
[13] Hua, C. C., Li, K., Guan, X. P.: Semi-global/global output consensus for nonlinear multiagent systems with time delays. Automatica 103 (2019), 480-489. DOI 10.1016/j.automatica.2019.02.022 | MR 3920859
[14] Hua, C. C., You, X., Guan, X. P.: Leader-following consensus for a class of high-order nonlinear multi-agent systems. Automatica 73 (2016), 138-144. DOI  | MR 3552070
[15] Kaviarasan, B., Kwon, O. M., Park, M. J., Sakthivel, R.: Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay. Appl. Math. Comput. 392 (2021), 125704. DOI  | MR 4160492
[16] Kaviarasan, B., Sakthivel, R., Li, Y., Zhao, D., Ren, Y.: Non-fragile control protocol for finite-time consensus of stochastic multi-agent systems with input time-varying delay. Int. J. Machine Learning Cybernet. 11 (2020), 2, 325-337. DOI  | MR 3888378
[17] Khalil, K. H.: Nonlinear Systems. (Third edition.) Prentice-Hall, Upper Saddle River, NJ 2002. Zbl 1194.93083
[18] Koo, M. S., Choi, H. L.: Output feedback regulation of a class of lower triangular nonlinear systems with arbitrary unknown measurement sensitivity. Int. J. Control Automat. Systems 18 (2020), 9, 2186-2194. DOI 
[19] Krstic, M., Deng, H.: Stabilization of Uncertain Nonlinear Systems. Springer, New York 1998. MR 1639235
[20] Lei, H., Lin, W.: Universal adaptive control of nonlinear systems with unknown growth rate by output feedback. Automatica 42 (2006), 10, 1783-1789. DOI  | MR 2249724 | Zbl 1114.93057
[21] Lei, H., Lin, W.: Adaptive regulation of uncertain nonlinear systems by output feedback: A universal control approach. Systems Control Lett. 56 (2007), 7-8, 529-537. DOI  | MR 2332005 | Zbl 1118.93026
[22] Li, K., Hua, C. C., You, X., Ahn, C. K.: Leader-following asynchronous consensus for multiagent systems with unknown control and output directions. Automatica 132 (2021), 109832. DOI  | MR 4295948
[23] Li, K., Hua, C .C., You, X., Guan, X. P.: Output feedback-based consensus control for nonlinear time delay multiagent systems. Automatica 111 (2020), 108669. DOI  | MR 4039383
[24] Li, K., Hua, C. C., You, X., Guan, X. P.: Distributed output-feedback consensus control of multiagent systems with unknown output measurement sensitivity. IEEE Trans. Automat. Control 66 (2021), 7, 3303-3310. DOI  | MR 4284153
[25] Li, H., Liu, Q., Feng, G., Zhang, X.: Leader-follower consensus of nonlinear time-delay multiagent systems: A time-varying gain approach. Automatica 126 (2021), 109444. DOI  | MR 4212890
[26] Li, C., Tong, S., Wang, W.: Fuzzy adaptive high-gain-based observer backstepping control for SISO nonlinear systems. Inform. Sci. 181 (2011), 11, 2405-2421. DOI  | MR 2781794
[27] Li, W., Yao, X., Krstic, M.: Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica 120 (2020), 109112. DOI  | MR 4118791
[28] Liu, C., Yue, X., Yang, Z.: Are nonfragile controllers always better than fragile controllers in attitude control performance of post-capture flexible spacecraft?. Aerospace Sci. Technol. 118 (2021), 107053. DOI 
[29] Ma, H., Wang, Z., Wang, D., Liu, D., Yan, P., Wei, Q.: Neural-network-based distributed adaptive robust control for a class of nonlinear multiagent systems with time delays and external noises. IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 6, 750-758. DOI  | MR 0697005
[30] Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Systems Control Lett. 59 (2010), 3-4, 209-217. DOI  | MR 2642259
[31] Pandey, S. K., Mohanty, S. R., Kishor, N.: A literature survey on load-frequency control for conventional and distribution generation power systems. Renewable Sustainable Energy Rev. 25 (2013), 318-334. DOI 
[32] Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Automat. Control 47 (2002), 10, 1710-1715. DOI  | MR 1929946
[33] Ren, W., Sorensen, N.: Distributed coordination architecture for multi-robot formation control. Robotics Autonomous Syst. 56 (2008), 4, 324-333. DOI 
[34] Rigatos, G., Siano, P., Zervos, N.: Sensorless control of distributed power generators with the derivative-free nonlinear kalman filter. IEEE Trans. Industr. Electronics 61 (2014), 11, 6369-6382. DOI 
[35] Sakthivel, R., Parivallal, A., Tuan, N. H., Manickavalli, S.: Nonfragile control design for consensus of semi-Markov jumping multiagent systems with disturbances. Int. J. Adaptive Control Signal Process. 35 (2021), 6, 1039-1061. DOI  | MR 4273524
[36] Sun, Z. Y., Xing, J. W., Meng, Q.: Output feedback regulation of time-delay nonlinear systems with unknown continuous output function and unknown growth rate. Nonlinear Dynamics 100 (2020), 2, 1309-1325. DOI 
[37] Wang, X. H., Ji, H. B.: Leader-follower consensus for a class of nonlinear multi-agent systems. Int. J. Control Automat. Systems 10 (2012), 1, 27-35. DOI 
[38] Wang, W., Wen, C., Huang, J.: Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica 77 (2017), 133-142. DOI  | MR 3605772
[39] Xu, R., Wang, X., Zhou, Y.: Observer-based event-triggered adaptive containment control for multiagent systems with prescribed performance. Nonlinear Dynamics 107 (2022), 3, 2345-2362. DOI 
[40] Yang, B., Lin, W.: Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Trans. Automat. Control 49 (2004), 7, 1069-1080. DOI  | MR 2071935
[41] Yu, G., Shen, Y.: Relative-output-based consensus for nonlinear multi-agent systems with unknown measurement sensitivities. Neurocomputing 382 (2020), 21-31. DOI 
[42] Yuan, Y., Wang, Z., Zhang, P., Dong, H.: Nonfragile near-optimal control of stochastic time-varying multiagent systems with control- and state- dependent noises. IEEE Trans. Cybernet. 49 (2019), 7, 2605-2617. DOI 
[43] Zhang, C., Chang, L., Zhang, X.: Leader-follower consensus of upper-triangular nonlinear multi-agent systems. IEEE/CAA J. Automat. Sinica 1 (2014), 2, 210-217. DOI 
[44] Zhang, D., Deng, C., Feng, G.: Resilient cooperative output regulation for nonlinear multi-agent systems under DoS attacks. IEEE Trans. Automat. Control (2022), 1-8. DOI 
[45] Zhang, J., Qi, D., Zhao, G.: A new game model for distributed optimization problems with directed communication topologies. Neurocomputing 148 (2015), 278-287. DOI 
[46] Zhang, J., Song, J., Li, J., Han, F., Zhang, H.: Observer-based non-fragile ${H_\infty }$-consensus control for multi-agent systems under deception attacks. Int. J. Systems Sci. 52 (2021), 6, 1223-1236. DOI  | MR 4246968
[47] Zhou, T., Liu, Q., Wang, W.: Non-fragile disturbance observer-based containment control of multi-agent systems over switching topologies. IEEE Access 9 (2021), 123430-123437. DOI 
Partner of
EuDML logo