[1] Ahn, C. K.:
Delay-dependent state estimation for T-S fuzzy delayed Hopfield neural networks. Nonlinear Dyn. 61 (2010), 483-489.
DOI |
MR 2718308
[2] Ahn, C. K.:
Some new results on stability of Takagi-Sugeno fuzzy Hopfield neural networks. Fuzzy Sets Syst. 179 (2011), 100-111.
DOI |
MR 2818200
[3] Aouiti, C., Dridi, F.:
Weighted pseudo almost automorphic solutions for neutral type fuzzy cellular neural networks with mixed delays and $D$ operator in Clifford algebra. Int. J. Syst. Sci. 51 (2020), 1759-1781.
DOI |
MR 4124722
[4] Aouiti, C., Gharbia, I. B.:
Dynamics behavior for second-order neutral Clifford differential equations: inertial neural networks with mixed delays. Comput. Appl. Math. 39 (2020), 120.
DOI |
MR 4083491
[5] Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R.:
Leakage delays in T-S fuzzy cellular neural networks. Neural Process. Lett. 33 (2011), 111-136.
DOI
[6] Boonsatit, N., Sriraman, R., Rojsiraphisal, T., Lim, C. P., Hammachukiattikul, P., Rajchakit, G.:
Finite-Time Synchronization of Clifford-valued neural networks with infinite distributed delays and impulses. IEEE Access. 9 (2021), 111050-111061.
DOI
[7] Cao, J., Ho, D. W. C.:
A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach. Chaos Solitons Fract. 24 (2005), 1317-1329.
DOI |
MR 2123277
[8] Chen, S., Li, H. L., Kao, Y., Zhang, L., Hu, C.:
Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. J. Franklin Inst. 358 (2021), 7650-7673.
DOI |
MR 4319372
[10] Gopalsamy, K.:
Stability of artificial neural networks with impulses. Appl. Math. Comput. 154 (2004), 783-813.
DOI |
MR 2072820
[11] Guan, Z. H., Chen, G. R.:
On delayed impulsive Hopfield neural networks. Neural Network 12 (1999), 273-280.
DOI
[12] Hirose, A.:
Complex-valued Neural Networks: Theories and Applications. World Scientific 2003.
MR 2061862
[13] Hitzer, E., Nitta, T., Kuroe, Y.:
Applications of Clifford's geometric algebra. Adv. Appl. Clifford Algebras 23 (2013), 377-404.
DOI |
MR 3068125
[14] Hopfield, J. J.:
Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81 (1984), 3088-3092.
DOI
[15] Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N.:
Associative memory in quaternionic Hopfield neural network. Int. J. Neural Syst. 18 (2008), 135-145.
DOI
[16] Jian, J., Wan, P.:
Global exponential convergence of fuzzy complex-valued neural networks with time-varying delays and impulsive effects. Fuzzy Sets Syst. 338 (2018), 23-39.
DOI |
MR 3770768
[17] Li, B., Li, Y.:
Existence and global exponential stability of almost automorphic solution for Clifford-valued high-order Hopfield neural networks with leakage delays. Complexity 2019 (2019), 6751806.
DOI
[18] Li, X., Wu, J.:
Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64 (2016), 63-69.
DOI |
MR 3433081
[19] Li, Y., Xiang, J.:
Existence and global exponential stability of anti-periodic solution for Clifford-valued inertial Cohen-Grossberg neural networks with delays. Neurocomputing 332 (2019), 259-269.
DOI
[20] Liu, Y., Wang, Z., Liu, X.:
Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19 (2006), 667-675.
DOI
[21] Liu, Y., Xu, P., Lu, J., Liang, J.:
Global stability of Clifford-valued recurrent neural networks with time delays. Nonlinear Dyn. 84 (2016), 767-777.
DOI |
MR 3474926
[22] Long, S., Song, Q., Wang, X., Li, D.:
Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations. J. Franklin Inst. 349 (2012), 2461-2479.
DOI |
MR 2960619
[23] Mandic, D. P., Jahanchahi, C., Took, C. C.:
A quaternion gradient operator and its applications. IEEE Signal Proc. Lett. 18 (2011), 47-50.
DOI
[24] Marcus, C. M., Westervelt, R. M.:
Stability of analog neural networks with delay. Phys. Rev. A 39 (1989), 347-359.
DOI |
MR 0978323
[25] Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15 (2004), 149-164.
[26] Nitta, T.:
Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Netw. 16 (2003), 1101-1105.
DOI
[27] Park, P. G., Ko, J. W., Jeong, C.:
Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 235-238.
DOI |
MR 2878269
[28] Pearson, J. K., Bisset, D. L.: Neural networks in the Clifford domain. In: Proc. 1994 IEEE ICNN, Orlando 1994.
[29] Rajchakit, G., Sriraman, R., Boonsatit, N., Hammachukiattikul, P., Lim, C. P., Agarwal, P.:
Exponential stability in the Lagrange sense for Clifford-valued recurrent neural networks with time delays. Adv Differ. Equat. 2021 (2021), 1-21.
DOI |
MR 4260066
[30] Rajchakit, G., Sriraman, R., Lim, C. P, Unyong, B.:
Existence, uniqueness and global stability of Clifford-valued neutral-type neural networks with time delays. Math. Comput. Simulat. (2021).
DOI |
MR 4439395
[31] Rajchakit, G., Sriraman, R., Vignesh, P., Lim, C. P.:
Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis. Appl. Math. Comput. 407 (2021), 126309.
MR 4256147
[32] Samidurai, R., Sriraman, R., Zhu, S.:
Leakage delay-dependent stability analysis for complex-valued neural networks with discrete and distributed time-varying delays. Neurocomputing 338 (2019), 262-273.
DOI
[33] Samidurai, R., Senthilraj, S., Zhu, Q., Raja, R., Hu, W.:
Effects of leakage delays and impulsive control in dissipativity analysis of Takagi-Sugeno fuzzy neural networks with randomly occurring uncertainties. J. Franklin Inst. 354 (2017), 3574-3593.
DOI |
MR 3634547
[34] Shen, S., Li, Y.:
$S^p$-Almost periodic solutions of Clifford-valued fuzzy cellular neural networks with time-varying delays. Neural Process. Lett. 51 (2020), 1749-1769.
DOI |
MR 4166609
[35] Shu, H., Song, Q., Liu, Y., Zhao, Z., Alsaadi, F. E.:
Global $\mu$-stability of quaternion-valued neural networks with non-differentiable time-varying delays. Neurocomputing 247 (2017), 202-212.
DOI
[36] Song, Q.:
Exponential stability of recurrent neural networks with both time-varying delays and general activation functions via LMI approach. Neurocomputing 71 (2008), 2823-2830.
DOI
[37] Song, Q., Long, L., Zhao, Z., Liu, Y., Alsaadi, F. E.:
Stability criteria of quaternion-valued neutral-type delayed neural networks. Neurocomputing 412 (2020), 287-294.
DOI
[38] Song, Q., Zhao, Z., Liu, Y.:
Stability analysis of complex-valued neural networks with probabilistic time-varying delays. Neurocomputing 159 (2015), 96-104.
DOI
[39] Takagi, T., Sugeno, M.:
Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernet. 15 (1985), 116-132.
DOI
[40] Tan, Y., Tang, S., Yang, J., Liu, Z.:
Robust stability analysis of impulsive complex-valued neural networks with time delays and parameter uncertainties. J. Inequal. Appl. 2017 (2017), 215.
DOI 10.1186/s13660-017-1490-0 |
MR 3696162
[41] Wang, L., Lam, H. K.:
New stability criterion for continuous-time Takagi-Sugeno fuzzy systems with time-varying delay. IEEE Trans. Cybern. 49 (2019), 1551-1556.
DOI
[42] Zhang, Z., Liu, X., Zhou, D., Lin, C., Chen, J., Wang, H.:
Finite-time stabilizability and instabilizability for complex-valued memristive neural networks with time delays. IEEE Trans. Syst. Man Cybern. Syst. 48 (2018), 2371-2382.
DOI
[43] Zhu, J., Sun, J.:
Global exponential stability of Clifford-valued recurrent neural networks. Neurocomputing 173 (2016), 685-689.
DOI