[2] Baranov, M.A., Schwarz, A.S.:
Multiloop contribution to string theory. JETP Lett. 42 (1985), 419–421.
MR 0875755
[3] Belopolsky, A.: New geometrical approach to superstrings. [arXiv:hep-th/9703183 [hep-th]].
[4] Bernstein, I.N., Leites, D.A.:
Integral forms and the Stokes formula on supermanifolds. Funkt. Anal. Pril. 11 (1977), 55.
MR 0647158
[5] Cacciatori, S.L., Noja, S., Re, R.:
The unifying double complex on supermanifolds. Doc. Math. (2022), 489–518.
DOI 10.4171/dm/875
[6] Castellani, L., D’Auria, R., Fré, P.:
Supergravity and superstrings: A Geometric perspective. Singapore: World Scientific 1, 2, 3 (1991), 1375–2162.
MR 1120024
[7] Catenacci, R., Cremonini, C.A., Grassi, P.A., Noja, S.:
Cohomology of Lie superalgebras: Forms, integral forms and coset superspaces. [arXiv:2012.05246 [hep-th]].
MR 4037668
[10] Cremonini, C.A., Grassi, P.A.: Generalised cocycles and super p-branes. [arXiv:2206.03394 [hep-th]].
[13] Cremonini, C.A., Grassi, P.A.:
Self-dual forms in supergeometry I: The chiral boson. Nuclear Phys. B 973 (2021), 115596.
MR 4335819
[14] Cremonini, C.A., Grassi, P.A., et alii, : In preparation.
[15] Duff, M.J.:
The conformal brane-scan: an update. [arXiv:2112.13784 [hep-th]].
MR 4447865
[16] Erler, T., Konopka, S., Sachs, I.:
Resolving Witten’s superstring field theory. JHEP 12 (2014), 1550018.
MR 3214038
[17] Fiorenza, D., Sati, H., Schreiber, U.:
Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields. Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018.
DOI 10.1142/S0219887815500188 |
MR 3305054
[18] Frappat, L., Sorba, P., Sciarrino, A.:
Dictionary on Lie Algebras and Superalgebras. Academic Press, 2000.
MR 1773773
[19] Friedan, D., Martinec, E.J., Shenker, S.H.:
Conformal invariance, supersymmetry and string theory. Nuclear Phys. B 271 (1986), 93–165.
MR 0845945
[24] Lebedev, A., Leites, D.A., Shereshevskii, I.:
Lie superalgebra structures in cohomology spaces of Lie algebras with coefficients in the adjoint representation. Amer. Math. Soc. Transl. Ser. 2 213 (2005), 157–172.
MR 2140720
[25] Lehrer, G.I., Zhang, R.B.:
The first fundamental theorem of invariant theory for the orthosymplectic supergroup. Commun. Math. Phys. 349 (2) (2017), 661–702.
DOI 10.1007/s00220-016-2731-7 |
MR 3594367
[26] Lehrer, G.I., Zhang, R.B.:
The second fundamental theorem of invariant theory for the orthosymplectic supergroup. Nagoya Math. J. 242 (2021), 52–76.
DOI 10.1017/nmj.2019.25 |
MR 4250733
[28] Manin, Y.I.:
Gauge field theory and complex geometry. Springer, Berlin, 1988, Translated from the Russian by N. Koblitz and J. R. King. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 289.
MR 0954833
[29] Noja, S.: On the geometry of forms on supermanifolds. [arXiv:2111.12841 [math.AG]].
[30] Noja, S., Re, R.:
A note on super Koszul complex and the Berezinian. Ann. Mat. Pura Appl. (4) 201 (2022), 403–421.
MR 4375015
[33] Scheunert, M., Zhang, R.B.:
Cohomology of Lie superalgebras and of their generalizations. J. Math. Phys. 39 (1998), 5024–5061.
DOI 10.1063/1.532508 |
MR 1643330
[34] Su, Y., Zhang, R.B.:
Cohomology of Lie superalgebras $sl_{m|n}$ and $osp_{2|2n}$. Proc. London Math. Soc. 94 (2007), 91–136.
MR 2293466