Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Sombor index; quasi-tree; tree
Summary:
The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt {d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathscr {Q}(n,k)=\{G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\}$. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathscr {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
References:
[1] Bondy, J. A., Murty, U. S. R.: Graph Theory. Graduate Texts in Mathematics 244. Springer, Berlin (2008),\99999DOI99999 10.1007/978-1-84628-970-5 . MR 2368647 | Zbl 1134.05001
[2] Chen, H., Li, W., Wang, J.: Extremal values on the Sombor index of trees. MATCH Commun. Math. Comput. Chem. 87 (2022), 23-49. DOI 10.46793/match.87-1.023C | Zbl 7582823
[3] Cruz, R., Gutman, I., Rada, J.: Sombor index of chemical graphs. Appl. Math. Comput. 399 (2021), Article ID 126018, 10 pages. DOI 10.1016/j.amc.2021.126018 | MR 4212004 | Zbl 07423489
[4] Cruz, R., Rada, J.: Extremal values of the Sombor index in unicyclic and bicyclic graphs. J. Math. Chem. 59 (2021), 1098-1116. DOI 10.1007/s10910-021-01232-8 | MR 4232832 | Zbl 1462.05071
[5] Cruz, R., Rada, J., Sigarreta, J. M.: Sombor index of trees with at most three branch vertices. Appl. Math. Comput. 409 (2021), Article ID 126414, 9 pages. DOI 10.1016/j.amc.2021.126414 | MR 4271495 | Zbl 07425030
[6] Das, K. C., Gutman, I.: On Sombor index of trees. Appl. Math. Comput. 412 (2022), Article ID 126575, 8 pages. DOI 10.1016/j.amc.2021.126575 | MR 4300333 | Zbl 07426979
[7] Deng, H., Tang, Z., Wu, R.: Molecular trees with extremal values of Sombor indices. Int. J. Quantum Chem. 121 (2021), Article ID e26622, 9 pages. DOI 10.1002/qua.26622
[8] Gutman, I.: Geometric approach to degree-based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16. Zbl 1474.92154
[9] Liu, H., Chen, H., Xiao, Q., Fang, X., Tang, Z.: More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons. Int. J. Quantum Chem. 121 (2021), Article ID e26689, 9 pages. DOI 10.1002/qua.26689
[10] Liu, H., Gutman, I., You, L., Huang, Y.: Sombor index: Review of extremal results and bounds. J. Math. Chem. 60 (2022), 771-798. DOI 10.1007/s10910-022-01333-y | MR 4402726 | Zbl 07534385
[11] Rada, J., Rodríguez, J. M., Sigarreta, J. M.: General properties on Sombor indices. Discrete Appl. Math. 299 (2021), 87-97. DOI 10.1016/j.dam.2021.04.014 | MR 4256885 | Zbl 1465.05042
[12] Réti, T., Došlić, T., Ali, A.: On the Sombor index of graphs. Contrib. Math. 3 (2021), 11-18. DOI 10.47443/cm.2021.0006 | MR 4399418
[13] Wang, Z., Mao, Y., Li, Y., Furtula, B.: On relations between Sombor and other degree-based indices. J. Appl. Math. Comput. 68 (2022), 1-17 \99999DOI99999 10.1007/s12190-021-01516-x . MR 4370614 | Zbl 07534916
[14] Zhou, T., Lin, Z., Miao, L.: The Sombor index of trees and unicyclic graphs with given maximum degree. DML, Discrete Math. Lett. 7 (2021), 24-29. DOI 10.47443/dml.2021.0035 | MR 4256414
Partner of
EuDML logo