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Abstract. The Sombor index SO(G) of a graph G is the sum of the edge weights
d%(u) + a% (v) of all edges uv of G, where dg(u) denotes the degree of the vertex u

in G. A connected graph G = (V, E) is called a quasi-tree if there exists u € V(@) such
that G — u is a tree. Denote 2(n,k) = {G: G is a quasi-tree graph of order n with G — u
being a tree and dg(u) = k}. We determined the minimum and the second minimum Som-
bor indices of all quasi-trees in 2(n, k). Furthermore, we characterized the corresponding
extremal graphs, respectively.

Keywords: Sombor index; quasi-tree; tree

MSC 2020: 05C07, 05C09, 05C35

1. INTRODUCTION

We first introduce some terminology. Let G = (V(G), E(G)) be a simple undi-
rected graph of order n. Denote V(G) = {v1,va,...,v,}. For v; € V(G), we
use Ng(v;) to denote the set of neighbors of v; in G, and the degree of v;, written
by dg(v;) or d;, is the number of edges incident with v;. An i-vertez is a vertex of
degree i. Let V;(G) be the set of all i-vertices in G. For a subgraph H of G, let
Ny (v;) = Ng(vi) N V(H) and dg(v;) = |[Ng(v;)| for v; € V(G). To subdivide an
edge e in G is to delete e, add a new vertex x, and join x to the ends of e. We will
use G —v; or G — v;v; to denote the graph that arises from G by deleting the vertex
v; € V(G) or the edge v;v; € E(G). Similarly, G +v;v; is a graph that arises from G
by adding an edge v;v; ¢ E(G).
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A tree is a connected acyclic graph. If there exists a vertex v; € V(G) such that
G — v; is a tree, then G is called a quasi-tree. Let 2(n, k) = {G: G is a quasi-tree
graph of order n with G — v; being a tree and d; = k}. If k = 1, then 2(n, 1) is the
set of all trees of order n.

By P,,/C,, we denote a path/cycle of order n. Let T be a tree, and let P11 =
v1Vg ... V41 (I = 1) be a path of T with dr(vi) = 1, dr(v2) = ... = dr(v;) = 2 and
dr(vi+1) 2 3. Then we call Py a pendant chain of T and we also call that [ the
length of the pendant chain P,;;. For a tree T, if v is a vertex of T with exactly
dr(v) —1 > 2 pendant chains, then the subgraph induced by the union of vertex sets
of its dr(v) — 1 pendant chains is said to be a pendant spider of T at v. If T is not
a path, then T has some pendant spiders.

Proposition 1.1 ([1]). For a tree T we have dr(v) < |Vi(T)| for any v € V(T).
Moreover, |V1(T)| =2 if and only if T = P,.

A vertex-degree-based-topological index was recently introduced by Gutman
(see [8]), called the Sombor index, and defined for a graph G as

SO@G) = ). JE+d&
v;v; EE(G)

Since then, the problem concerning graphs with the maximal or minimal Sombor
index of a given class of graphs has been studied extensively, and numerous results
have been obtained, see [2]-[14]. For a comprehensive survey and more details on
Sombor index, we refer the reader to [10] and references therein.

In [6], [8], Gutman presented some properties of the Sombor index and charac-
terized the maximal and minimal graphs with respect to the Sombor indices. Zhou
et al. in [14] obtained the maximum and minimum Sombor indices of trees and
unicyclic graphs, respectively. Recently, Das and Gutman in [6] gave the maxi-
mum and minimum Sombor indices of all quasi-tree graphs, and also obtained the
second maximum and minimum extremal trees, respectively. In this paper, we deter-
mined the minimum and the second minimun Sombor indices of all quasi-tree graphs
in the set 2(n, k).

2. PRELIMINARIES

In this section, we first define some quasi-tree graphs (see Figure 1) in order to
formulate our results.

A fan F} is a graph obtained from a path P; and an isolated vertex v by adding
edges joining v to every vertex of P;.
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Figure 1. Some quasi-tree graphs in 2(n, k).

Let Fn1 = {Pn}, Fnn-1 = {Fn-1}, and F,; (2 < k < n—2) be a family of
graphs of order n obtained from Fj by a sequence of edge subdivisions, where the
subdivided edges are incident with some 2-vertices.

A T-shaped tree is a tree with exactly one of its vertices being 3-vertex. Let
Tn(a1,az2,a3) be a T-shape tree of order n such that T,(a1,az2,a3) — u = P, U
P,, UP,,, where u is the 3-vertex. Let u; € V1 (T, (a1, az2,a3)) NV (P,,) fori =1,2,3.
Denote

Wn(al, ao, a3) =K1V Tn,l(al, az, a3),

Un(ala ag, a3) = Tn(alv a2, a?)) + uju2,

By (a1, az,a3) = Ty(a1,a2,a3) + {urus, ugus}.
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Let FS be a graph of order n obtained from F,,_s € %#,_s 1 by subdividng an
edge of E( n—sk), whose ends are 3-vertices, s times. Denote

ﬁ,’L 1 :=1{Tn(a1,a2,a3): min{ay,aq,as3} > 2},
y! 2= {U (a17a27 3) az = 2}7
fgl 3 — {B (a17a27 3) az > 2}7

Tk =1F, <s<n—1—k} ford<k<n-—2,

Fhmo1 = {W (al,ag,ag): min{ay, as,az} > 2}.
By a straightforward calculation, we give the following proposition.

Proposition 2.1.

(i) If min{a1,as,as} > 2, then SO(T,(a1,a2,a3)) < SO(T,(a},ah, 1)), and
SO(Wy(a1,a2,a3)) < SOW,(a,a,1)), where af,ab > 1 and a} + ap =
a1 +as +az—1.

(if) If ag > 2, then SO(Uy(a1,a2,a3)) < SO(U,(a},ah,1)), where aj + a4 = a1 +
as +az — 1.

Next, we develop some useful tools in the following lemmas that will be used in
the proof of main results.

Lemma 2.1. Let g™ (z,y) = /22 +y2 — /22 + (y — )2 with 2y > r > 0. Then
g'")(z,y) is monotonic decreasing in x > 1 and monotomc increasing in y > 1.

Moreover, g(r)(x, Yy) Is monotonic increasing in r < y.

Proof. Since 2y > r >0, 4> > (y — r)?, we have

09wy _ _x x “0
oz Va2 +y? o 22+ ’
09(xy) oy y—r 1 _ 1 =0
by VaRrE VRt iraE Jre G-
09" (wy) _ __ y-r
or 22+ (y —r)?

Thus, the function g(”")(x y) is monotonic decreasing in z > 1, monotonic increasing
in y > 1 and monotonic increasing in r < y. O

Lemma 2.2. Let G be a graph and let wv,zy € E(G) with dg(u) > dg(z) and
da(v) < dg(y). Set G' = G — {uv, 2y} + {uy,zv}. Then

SO(G") < SO(G).
Moreover, the equality holds if and only if dg(u) = dg(z) or dg(v) = da(y).
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Proof. Note that V(G) = V(G’) and dg(w) = dg/(w) for all w € V(G). Then

SO(G") - \/d2 )+ d& (v +\/d2 )+ dZ(y
—\JdB(@) + a5 () — \JdE(w) + (o

Clearly, SO(G") = SO(G) if and only if dg(u) = dg(z) or dg(v) = dG (y). So we can
assume that dg(v) < dg(y) and dg(u) > dg(z). Let r := dg(y) — dg(v) > 0, then
by Lemma 2.1,

SO(G") = SO(G) = ¢ (da(u), de(y)) — ¢ (dc (), da(y)) <0

as dg(u) > dg(z). Therefore, the proof of Lemma 2.2 is complete. O

3. MAIN RESULTS

In this section, we will determine the minimum and the second minimum Sombor
indices of all quasi-tree graphs in 2(n, k), and characterize corresponding extremal
graphs.

Denote ¢(n,1) := 2v/5 + (n — 3)V/8, p(n, k) == (k — 2)VEk2 +9 + 2vVkZ +4 +
(k—=3)V184 (n —k —1)V/8+2V/13for2< k< n—1.

Theorem 3.1. Let G € 2(n, k) with1 <k <n—1. Then
(1) SO(G) = ¢(n, k)

with equality in (1) if and only if G € F,, .

Proof. First we note that if G € .%#, i, then SO(G) = ¢(n, k). Now we will show
that if G € 2(n, k), then SO(G) > ¢p(n, k) and the equality holds only if G € %, k.

Choose G € Z2(n, k) such that SO(G) is as small as possible. Assume that G — vy,
is a tree. Denote T':= G — v,,. Let V/(T) = {v; € V(T): d; > 3}.

Claim 3.1. If 6(G) =1, then A(G) < 2

Proof of Claim 3.1. Let v; € V(G) with dy = 1. If A(G) > 3, then V'(T) # 0.
Moreover, we can assume that v; € V1(T') and v1v, ¢ E(G). Choose v; € V'(T) such
that dr(v;, v1) is as small as possible. Then d; > 3, furthermore, (d; —1)%+4 < d?+1.
Let P :=wvjvy...v; be the only (v1,v;)-path in T'. We consider two cases.
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Case 1: vy,v; € E(G). In this case, we set G’ = G—v,v;4+v1v,. Then G’ € 2(n, k).
If v1v; € E(G), then

SO(G') - SO(G) = 3 (V@ -2+ - \Ja2 +2)

v; €N (vi)\{vn,v1}

+V(di =12 +4— 2+ 1+ VE2+4—\[k>+ d?

<0,
a contradiction.
If viv; ¢ E(G), then dy = ... =d;—1 = 2 by the choice of v;. By Lemma 2.1,
SO(G') — SO(G) = > (\/(di —1)2+d; - \/d? + d?)

v; ENG(vi)\{vi—1,0n}

VR 4+V22 122 - /12422

+V(di —1)? +22 - \/k2+d§— \/d$+22
V22422 12422 4 \/(di — 1)2 22 — /d? 4 22

= g(l)(2, 2) - g(l)(2a dz) < Oa

a contradiction.
Case 2: vyv; ¢ E(G). In this case, let vy € Ng(v;) \ V(P), and let G” =
G — vvy +v1vy. Then G” € 2(n, k). If v1v; € E(G), then

so@)-s0@G) = Y (Ja-12rd -\ JEea) e
v; ENg (vi)\{v}}

2B (A - 12+ 42+ 1

<0,
a contradiction. If viv; ¢ E(G), then dy = ... = d;—1 = 2 by the choice of v;. By
Lemma 2.1,
SO(G") — SO(G) = 3 (\/(di —1)? 42— \/dg + d;%)
v;ENG (vi)\{vi1,0!}
22—\ Jd 2 2 2
—\/12+22+\/(di—1)2+22—\/d§+722
< \/22+22—\/12+22+\/(di—1)2+22—\/d§+722
=g (2,2) - gV (2,d;) <0,
a contradiction. (]
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If £ = 1, then §(G) = 1 clearly, and thus G = P,, by Claim 3.1, the assertion holds
for £ = 1. So, in the following, we assume that k& > 2.

Claim 3.2. If k > 2, then §(G) = 2.

Proof of Claim 3.2. If §(G) = 1, then by Claim 3.1, A(G) < 2, which implies
A(T) = 2, that is, T is a path. Since k > 2, we have v,v; € FE(G) for some
v, € V(T)\ Vi(T). Thus, d; = 3, a contradiction with A(G) < 2. O

If £ =2, then G = C,, by Claim 3.2. Thus, the assertion holds for k = 2.

Claim 3.3. If k > 3, then T = P,_1.

Proof of Claim 3.3. If T' % P,_1, then there exists v; such that dr(v;) > 3
and |V1(T)| = 3. Choose v; € V/(T) such that T has a pendant spider at v;. Let
Pl = 04,04, .. .0, v; and P2 = vy, vy, ... vp,v; be two pendant chains with dr(v,,) =
dr(ve,) = 1, where s,¢ > 1, and let v;41 € Ng(vi) \ {va., v, }. Then dr(ve,) =
dr(ve;) =2 for 2 <1 < sand 2 < j <t Furthermore, d,, = dy, =2 and dg,,dp, <3
forall 2 <l <sand 2 <j<t.

By Proposition 1.1, k > |Vi(T')| > dr(v;) for any v; € V(T'). Moreover, we will
show that if d; = 3, then k& > d;11. If d;11 < 2, then k >3 > 2 > d;41. So we can
assume d;11 = 3. fvp,v;41 € E(G), then k 2 14+ |[VA(T)| > 1+ diy1, and if o041 €
E(G), then k > |Vi(T)| = di +dis1 —2 > di1 as |Vi(T7)| = dps (vj) = dr(v;) — 1 by
Proposition 1.1, where 77 (j € {4,i+1}) is the component containing v; of T'—v;v;41.

We set G* = G — v;0p, + Vo, Up,, then G* € 2(n, k). Then we consider two cases.

Case 1: s =1, 1i.e., vq,v; € E(G). If d; = 3, then k > d;;1, and by Lemma 2.1,

SO(G") = SO(G) = /a2y +4— /&y, + 9+ ViZ+9 - VA2 +4
=g (k,3) = g (dis1,3) <0,

a contradiction.
If d; > 4, we have (d; — 1)? + 9 < d? + 4, then by Lemma 2.1,

soG)-s0@G) = Y. (Jui-12+d -\ Jd2+a2)

v;ENG(vi)\{ve, }
+\/k2+32—\/k2+22+\/d§t+32—\/d§t+d§
+/(di —1)2+32 — \/d? + 22

< \/k2+32—\/k2+22+\/d§t+32—\/d§t+d§

=g (k,3) — g (dy,, di) < g™ (k,3) — gV (dy,, di) <O

as d; > 3 and k > dp,, a contradiction.
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Case 2: viv; ¢ E(G) (s > 2). In this case, dg, < 3 and k > |Vi(T)| = dr(v;). If
d; = 3, thenv,v; ¢ E(G) asdr(v;) = 3. Set G** = G—{vpvq,, ViVp, } +{VnVi, Va; 0, },
then G** € 2(n, k). By Lemma 2.2, SO(G**) < SO(G), a contradiction.

So we may assume that d; > 4, then k > |Vi(T)| > dr(v;) > 3 > d,,, and by
Lemma 2.1, we have

soE)-so@ = Y (Ja-1+d- /& +a)

v;€NG (vi)\{ve, }

VIR - ViR 2 [, +32—\/dg2+22

+\/d2+32 \/d2+d2+\/ )2 +d2, — \/d§+dgs
<\/k2+32—\/k2+22+\/d§2+32—\/d§2+22
= g(l)(ka'?’) - g(l)(da2,3) < 07

a contradiction. O

By Claim 3.3, we let T'= v1v2...v,—1. Denote X = {v; € V(T): d; > 3}.

Claim 3.4. If k > 3, then G[X] is connected.

Proof of Claim 3.4. Suppose G[X] is disconnected. Then G[X] contains at
least two components. Let P’ = vv;41...v; and P” = vq0q41...0; be the two
components of G[X] with j < a — 1. Then d;—1 = dy—1 = 2. Set G* = G —
{0i—104, Va—1V4 } +{ViVq, Vi—1Va—1}. Then G* € 2(n, k). Note that d; = d, = 3, and
thus, by Lemma 2.2, SO(G*) < SO(G), a contradiction. O

By Claims 3.3 and 3.4, G € .%,, ;.. Therefore, the proof of Theorem 3.1 is complete.
O

Denote ¢'(n,1) = (n — )\/_—1—3\/_4—3\/5,4,0’(71,2):(n—4)\/§+3\/ﬁ+\/5
and ¢'(n,3) = (n—5)v/8+6v13. For4 <k <n—2,let o' (n, k) = (k—2)VE2 + 9+
2VE2 + 44-(k—4)V18+(n—k— 2)f+4\/_ Letgp(nn 1) = (n=5)y/(n — 1)2 + 9+
3v/(n =12 +4+/(n—1)2+16 + (n — 8)V/18 + 3v/13 + 15.

Theorem 3.2. Let G € 2(n, k) \ Fp with 1 <k <n—1. Then
50(G) > ¢/ (n. k).

Moreover, the equality holds if and only if G € F/ .
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Proof. First we note that if G € #/ ,, then SO(G) = ¢'(n, k). Now we will
show that if G € 2(n, k) \ %, k, then SO(G) = ¢'(n, k) and the equality holds only
tGez,.

Choose G € 2(n, k) \ #, i such that SO(G) is as small as possible. Without loss
of generality, assume that G — v, is a tree. Denote T' = G — v,,. We consider the
following two cases.

Case 1: T is a path. In this case, k <n—2as G ¢ F, . Let T := v1v2... 0,1
and Ng(vn) = {viy, iy, ..., v, } with i3 <ido < ... < and i1 = n — ip.

Claim 3.5. Ifi; > 2 and k > 2, then i, = n — 1.

Proof of Claim 3.5. Suppose that i < n—2. Set G* = G — v, vp + VpUp_1.
Then G* € 2(n, k) \ Fpn i as vivy, ¢ E(G). If i, =n — 2, then

SO(G*) — SO(G) = Vk2 +22 — VE2 + 32+ /8 — V10

g 22—+ 32
<0,

and if 7 < n — 2, then

SO(G*) — SO(G) = VEk2+22 — V2 + 32 + \/clf,c,1 +22 — \/d?rl +3°
+2V8 - V13- V5
<28 — V13 — /5~ 0.1848 < 0.

Hence, in either case, we have a contradiction. O

Claim 3.6. Ifi; > 2, theni; > 3 for k < n — 3.

Proof of Claim 3.6. Suppose that i; = 2. If k = 1, then SO(G) = 2/10 +
VB +VI3+ (n—=5)v8=¢'(n,1) +2(vVI0+ V8 = VI3 = V5) > ¢(n,1). If k = 2,
then by Claim 3.5, v,v,_1 € E(G), and thus SO(G) = 2v/13 4+ V10 + (n — 3)V/8 =
©'(n,2) + V10 + 8 — V13 — /5 > ¢/(n,2). So we can assume that k > 3. Then by
Claim 3.5, v,v,—1 € E(G).

Since k < n — 3, there exists some i (3 < @ < n — 2) such that v; is a 2-vertex.
Choose v; € Vo(G) with the minimum ¢. Then v;_1 is a 3-vertex and d;+1 > 2. Set
G* = G — vavy, + vpv;. Then G* € 2(n, k) \ F#, ; and

SO(G") = SO(G) = \ [y +82 =\ [, + 22+ V17422 - 12+ 32
= g(l)(d’H‘lag) - g(l)(lag) < 07

a contradiction. O
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If £ = 1, then by Claim 3.6 and the symmetry, 3 < i; < n — 3, thus G =
T, (a1, a9,1), where a1, as > 2, we have SO(G) = 2v/5 4+ /10 + 213+ (n — 6)V/8 =
¢ (n,1)+v104+v/8 - /13 —/5 > ¢'(n, 1), and if k = 2, then by Claims 3.5 and 3.6,
i1 2 3 and iy, = n— 1, that is, G € %’'(n,2). So in the following, we can assume
k > 3. Let X := Ng(v,) \ {v1,vn-1}. If i1 > 2, then by an argument similar to the
proof of Claim 3.4, G[X] is a path, and hence,

SOG) = (k= DVE2+9+ V2 +4+ (k—2)VI8+ (n— k — 3)VB+2V13+ V5
=/ (n,k) +VE2+9 - Vk2 +4+2V18 - 2V13 - VB + 5
< @' (n, k) +2vV18 =213 — V8 + V5 =~ ¢/ (n, k) + 0.6818 > ¢/ (n, k).

So we can assume that 47 = 1 and iy, = n — 1. Then k > 4 and G[X] is discon-
nected as G ¢ %, ;. Furthermore, G[X] contains exactly two components. Oth-
erwise, let v;v;41...v; and vaVe41 ...y be two components with j < a — 1. Then
di—1 = de—1 = 2. Set G* = G — {v;—10i,Va—1Va } + {ViVa,Vi—1V4—1}. Then G* €
2(n, k) \ Fn k. By Lemma 2.2, SO(G*) < SO(G), a contradiction. So G € 7 ;.

Case 2: T is not a path. In this case, there exists a vertex v; € V(T') such that
dr(v;) = 3. Choose v; with dp(v;) > 3 such that T has a pendant spider at v;. Then
by an argument similar to the proof of Claims 3.1-3.3, we have the following:

Claim 3.7.

(i) T =T,-1(a1,az2,as3).
(ii) Ifk > [VA(T)|, then V1(T) C Ng(vn).
(i) If k < |[Vi(T)|, then Ng(vy,) C Vi(T).

By Claim 3.7 and Proposition 2.1, if & = 1, then G = T,(a1,a2,a3) with
min{ay, as,a3} > 2; if k = 2, then G = U,(a1,a2,a3) with ag > 2; if k = 3,
then G = By, (a1, az,a3) with ag > 2; and if k =n — 1, then G = W, (a1, az, az) with
min{as,as,as} > 2. Thus, G € F'(n,k) for k € {1,2,3,n — 1}.

So, in the following, we assume 4 < k < n — 2. Then by Claim 3.7 (ii), d; = 2
for any v; € Vi(T). Let X' = {v; € V(T): d; > 3}. Note that each vertex of
Ng(vn) \ (Vi(T) U {v;}) is a 3-vertex, and hence k — 3 < | X'| < k — 2 and G[V2(G)]
contains at least three components G7, G3 and G3 as |V;(T)| = 3.

If G[X'] is disconnected, let G5 and G3 be two components of G[X'], then there
exists a v; € V(G?) such that vjv;, € E(G), where vy € V(G3) for j = 1,2. Set
G* = G — {vivr,vove } + {viva,v1rve }. Then G* € 2(n, k) \ Z, k. Note that
di = dp = 3 and diy = dy = 2, and thus, by Lemma 2.2, SO(G*) < SO(G),
a contradiction. Therefore, G[X'] is connected. Clearly, G[X'] is acyclic. Thus,
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G[X'] is a tree and k — 4 < |E(G[X'])| < k—-3. If |[E(GIX'])] = k — 3, ie,
vpv; ¢ E(G), then

SO(G) = (k—3)(V32+ 32+ VE> +9) + 3(VE> + 4+ /32 +22) + (n — k — 2)V/8
(n, k) + V2 +22 — /32 +22 — \/k2 + 32 + /32 4 32

n)
(n, k) + g% =3 (2,k) — g* =¥ (3,k) > ¢/ (n, k),

(k
s0/
s0/
where the last inequality follows from Lemma 2.1. So we can assume that

then v,v; € E(G), that is, d; = 4. If k = 4, then

SO(G) = V324 620 + (n — 5)V8
= O/(1,4) +4V/42 + 22 4 \/42 £ 42 4 /22 £ 22— 2/42 £ 32 — 4,/32 4 22
~ ¢'(n,4) +1.9516 > ¢’ (n,4).

If k > 5, let t = [Ng(vi) N V3(G)], then

SO(G) = (k= 4)VEk2 + 32 + VE2 + 42 + 3V/k2 + 22 +t(V/32 + 42 + /32 4 22)
+(k=4—1)/32 4324+ (B3-1)VA2+22+ (n—k—1)V8
> (k—4)VE2 +32 + k2 + 42 + 3V/k2 + 22 + 3(V/32 + 42 + /32 + 22)
+(k=TVR+32+(n—k—1)V8
=o' (k) —2VR2+ 32+ V2 + 42+ V2 + 22+ 15— VI3 - 3V18 + V38
~ ¢ (n, k) + g (k,4) — gV (k,3) + 1.4950 > ¢’ (n, k).

Therefore, the proof of Theorem 3.2 is complete. O
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