Previous |  Up |  Next

Article

Keywords:
arithmetic progression; Golomb topology; Kirch topology; totally Brown space; totally separated space
Summary:
A topological space $X$ is totally Brown if for each $n \in \mathbb{N} \setminus \{1\}$ and every nonempty open subsets $U_1,U_2,\ldots,U_n$ of $X$ we have ${\rm cl}_X(U_1) \cap {\rm cl}_X(U_2) \cap \cdots \cap {\rm cl}_X(U_n) \ne \emptyset$. Totally Brown spaces are connected. In this paper we consider the Golomb topology $\tau_G$ on the set $\mathbb{N}$ of natural numbers, as well as the Kirch topology $\tau_K$ on $\mathbb{N}$. Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in $(\mathbb{N},\tau_G)$. We also show that $(\mathbb{N},\tau_G)$ and $(\mathbb{N},\tau_K)$ are aposyndetic. Our results generalize properties obtained by A. M. Kirch in 1969 and by P. Szczuka in 2010, 2013 and 2015.
References:
[1] Alberto-Domínguez J. C., Acosta G., Madriz-Mendoza M.: The common division topology on $\mathbb{N}$. accepted in Comment. Math. Univ. Carolin.
[2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space. Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
[3] Banakh T., Stelmakh Y., Turek S.: The Kirch space is topologically rigid. Topology Appl. 304 (2021), Paper No. 107782, 16 pages. DOI 10.1016/j.topol.2021.107782 | MR 4339625
[4] Bing R. H.: A connected countable Hausdorff space. Proc. Amer. Math. Soc. 4 (1953), 474. DOI 10.1090/S0002-9939-1953-0060806-9 | MR 0060806
[5] Clark P. L., Lebowitz-Lockard N., Pollack P.: A note on Golomb topologies. Quaest. Math. 42 (2019), no. 1, 73–86. DOI 10.2989/16073606.2018.1438533 | MR 3905659
[6] Dontchev J.: On superconnected spaces. Serdica 20 (1994), no. 3–4, 345–350. MR 1333356
[7] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[8] Fine B., Rosenberger G.: Number Theory. An Introduction via the Density of Primes. Birkhäuser/Springer, Cham, 2016. MR 3559913
[9] Furstenberg H.: On the infinitude of primes. Amer. Math. Monthly 62 (1955), 353. DOI 10.2307/2307043 | MR 0068566
[10] Golomb S. W.: A connected topology for the integers. Amer. Math. Monthly 66 (1959), 663–665. DOI 10.1080/00029890.1959.11989385 | MR 0107622
[11] Golomb S. W.: Arithmetica topologica. General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Prague, 1961, Academic Press, New York, Publ. House Czech. Acad. Sci., Praha, 1962, 179–186 (Italian). MR 0154249
[12] Jones F. B.: Aposyndetic continua and certain boundary problems. Amer. J. Math. 63 (1941), 545–553. DOI 10.2307/2371367 | MR 0004771
[13] Jones G. A., Jones J. M.: Elementary Number Theory. Springer Undergraduate Mathematics Series, Springer, London, 1998. MR 1610533
[14] Kirch A. M.: A countable, connected, locally connected Hausdorff space. Amer. Math. Monthly 76 (1969), 169–171. DOI 10.1080/00029890.1969.12000163 | MR 0239563
[15] Nanda S., Panda H. K.: The fundamental group of principal superconnected spaces. Rend. Mat. (6) 9 (1976), no. 4, 657–664. MR 0434295
[16] Rizza G. B.: A topology for the set of nonnegative integers. Riv. Mat. Univ. Parma (5) 2 1993, 179–185. MR 1276050
[17] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology. Dover Publications, Mineola, New York, 1995. MR 1382863 | Zbl 0386.54001
[18] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies. Demonstratio Math. 43 (2010), no. 4, 899–909. DOI 10.1515/dema-2010-0416 | MR 2761648
[19] Szczuka P.: Connections between connected topological spaces on the set of positive integers. Cent. Eur. J. Math. 11 (2013), no. 5, 876–881. MR 3032336
[20] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies. Demonstratio Math. 46 (2013), no. 2, 429–435. MR 3098036
[21] Szczuka P.: Regular open arithmetic progressions in connected topological spaces on the set of positive integers. Glas. Mat. Ser. III 49(69) (2014), no. 1, 13–23. DOI 10.3336/gm.49.1.02 | MR 3224474
[22] Szczuka P.: The closures of arithmetic progressions in the common division topology on the set of positive integers. Cent. Eur. J. Math. 12 (2014), no. 7, 1008–1014. MR 3188461
[23] Szczuka P.: The closures of arithmetic progressions in Kirch's topology on the set of positive integers. Int. J. Number Theory 11 (2015), no. 3, 673–682. DOI 10.1142/S1793042115500360 | MR 3327837
[24] Szyszkowska P., Szyszkowski M.: Properties of the common division topology on the set of positive integers. J. Ramanujan Math. Soc. 33 (2018), no. 1, 91–98. MR 3772612
Partner of
EuDML logo