[1] Alberto-Domínguez J. C., Acosta G., Madriz-Mendoza M.: The common division topology on $\mathbb{N}$. accepted in Comment. Math. Univ. Carolin.
[2] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space. Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442.
[6] Dontchev J.:
On superconnected spaces. Serdica 20 (1994), no. 3–4, 345–350.
MR 1333356
[7] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[8] Fine B., Rosenberger G.:
Number Theory. An Introduction via the Density of Primes. Birkhäuser/Springer, Cham, 2016.
MR 3559913
[11] Golomb S. W.:
Arithmetica topologica. General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Prague, 1961, Academic Press, New York, Publ. House Czech. Acad. Sci., Praha, 1962, 179–186 (Italian).
MR 0154249
[13] Jones G. A., Jones J. M.:
Elementary Number Theory. Springer Undergraduate Mathematics Series, Springer, London, 1998.
MR 1610533
[15] Nanda S., Panda H. K.:
The fundamental group of principal superconnected spaces. Rend. Mat. (6) 9 (1976), no. 4, 657–664.
MR 0434295
[16] Rizza G. B.:
A topology for the set of nonnegative integers. Riv. Mat. Univ. Parma (5) 2 1993, 179–185.
MR 1276050
[17] Steen L. A., Seebach J. A., Jr.:
Counterexamples in Topology. Dover Publications, Mineola, New York, 1995.
MR 1382863 |
Zbl 0386.54001
[18] Szczuka P.:
The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies. Demonstratio Math. 43 (2010), no. 4, 899–909.
DOI 10.1515/dema-2010-0416 |
MR 2761648
[19] Szczuka P.:
Connections between connected topological spaces on the set of positive integers. Cent. Eur. J. Math. 11 (2013), no. 5, 876–881.
MR 3032336
[20] Szczuka P.:
The Darboux property for polynomials in Golomb's and Kirch's topologies. Demonstratio Math. 46 (2013), no. 2, 429–435.
MR 3098036
[21] Szczuka P.:
Regular open arithmetic progressions in connected topological spaces on the set of positive integers. Glas. Mat. Ser. III 49(69) (2014), no. 1, 13–23.
DOI 10.3336/gm.49.1.02 |
MR 3224474
[22] Szczuka P.:
The closures of arithmetic progressions in the common division topology on the set of positive integers. Cent. Eur. J. Math. 12 (2014), no. 7, 1008–1014.
MR 3188461
[23] Szczuka P.:
The closures of arithmetic progressions in Kirch's topology on the set of positive integers. Int. J. Number Theory 11 (2015), no. 3, 673–682.
DOI 10.1142/S1793042115500360 |
MR 3327837
[24] Szyszkowska P., Szyszkowski M.:
Properties of the common division topology on the set of positive integers. J. Ramanujan Math. Soc. 33 (2018), no. 1, 91–98.
MR 3772612