Previous |  Up |  Next

Article

Keywords:
weighted locally compact group; group algebra; measure algebra; Beurling algebra
Summary:
We show how the measure theory of regular compacted-Borel measures defined on the $\delta$-ring of compacted-Borel subsets of a weighted locally compact group $(G,\omega)$ provides a compatible framework for defining the corresponding Beurling measure algebra ${\mathcal M}(G,\omega)$, thus filling a gap in the literature.
References:
[1] Bonsall F. F., Duncan J.: Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer, New York, 1973. MR 0423029 | Zbl 0271.46039
[2] Dales H. G.: Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, New Series, 24; Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR 1816726
[3] Dales H. G., Lau A. T.-M.: The second duals of Beurling algebras. Mem. Amer. Math. Soc. 177 (2005), no. 836, vi + 191 pages. MR 2155972
[4] Fell J. M. G., Doran R. S.: Representations of $*$-algebras, Locally Compact Groups, and Banach $*$-algebraic Bundles, Vol. 1, Basic Representation Theory of Groups and Algebras. Pure and Applied Mathematics, 125, Academic Press, Boston, 1988. MR 0936628
[5] Ghahramani F.: Compact elements of weighted group algebras. Pacific J. Math. 113 (1984), no. 1, 77–84. DOI 10.2140/pjm.1984.113.77 | MR 0745596
[6] Ghahramani F.: Weighted group algebra as an ideal in its second dual space. Proc. Amer. Math. Soc. 90 (1984), no. 1, 71–76. DOI 10.1090/S0002-9939-1984-0722417-9 | MR 0722417
[7] Ghahramani F., Zadeh S.: Bipositive isomorphisms between Beurling algebras and between their second dual algebras. Canad. J. Math. 69 (2017), no. 1, 3–20. DOI 10.4153/CJM-2016-028-5 | MR 3589852
[8] Grønbæk N.: Amenability of weighted convolution algebras on locally compact groups. Trans. Amer. Math. Soc. 319 (1990), no. 2, 765–775. DOI 10.1090/S0002-9947-1990-0962282-5 | MR 0962282
[9] Hewitt E., Ross K. A.: Abstract Harmonic Analysis, Vol. I: Structure of Topological Groups. Integration Theory, Group Representations. Die Grundlehren der mathematischen Wissenschaften, 115, Academic Press, New York; Springer, Berlin, 1963. MR 0156915
[10] Ilie M., Stokke R.: Weak$^*$-continuous homomorphisms of Fourier–Stieltjes algebras. Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 107–120. DOI 10.1017/S0305004108001199 | MR 2431642
[11] Kaniuth E.: A Course in Commutative Banach Algebras. Graduate Texts in Mathematics, 246, Springer, New York, 2009. DOI 10.1007/978-0-387-72476-8 | MR 2458901
[12] Kroeker M. E., Stephens A., Stokke R., Yee R.: Norm-multiplicative homomorphisms of Beurling algebras. J. Math. Anal. Appl. 509 (2022), no. 1, Paper No. 125935, 25 pages. DOI 10.1016/j.jmaa.2021.125935 | MR 4355933
[13] Lau A. T.-M.: Operators which commute with convolutions on subspaces of $L_\infty(G)$. Colloq. Math. 39 (1978), no. 2, 351–359. DOI 10.4064/cm-39-2-351-359 | MR 0522378
[14] Palmer T. W.: Banach Algebras and the General Theory of $*$-algebras, Vol. I., Algebras and Banach algebras. Encyclopedia of Mathematics and Its Applications, 49, Cambridge University Press, Cambridge, 1994. MR 1270014
[15] Reiter H., Stegeman J. D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs, New Series, 22, The Clarendon Press, Oxford University Press, New York, 2000. MR 1802924
[16] Runde V.: Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), no. 1, 124–144. DOI 10.7146/math.scand.a-14452 | MR 2091485
[17] Samei E.: Weak amenability and $2$-weak amenability of Beurling algebras. J. Math. Anal. Appl. 346 (2008), no. 2, 451–467. DOI 10.1016/j.jmaa.2008.05.085 | MR 2431541
[18] Shepelska V., Zhang Y.: Non-weakly amenable Beurling algebras. Indiana Univ. Math. J. 67 (2018), no. 1, 119–150. DOI 10.1512/iumj.2018.67.6287 | MR 3776016
[19] Zadeh S.: Isomorphisms of Banach Algebras Associated with Locally Compact Groups. PhD Thesis, University of Manitoba, Canada, 2015.
[20] Zadeh S.: Isometric isomorphisms of Beurling algebras. J. Math. Anal. Appl. 438 (2016), no. 1, 1–13. DOI 10.1016/j.jmaa.2016.01.060 | MR 3462562
Partner of
EuDML logo